Featured Research

from universities, journals, and other organizations

Single-atom writer a landmark for quantum computing

Date:
September 19, 2012
Source:
University of New South Wales
Summary:
Engineers have created the first working quantum bit based on a single atom in silicon, opening the way to ultra-powerful quantum computers of the future. Scientists were able to both read and write information using the spin, or magnetic orientation, of an electron bound to a single phosphorus atom embedded in a silicon chip.

This is an artist’s impression of a phosphorus atom (red sphere surrounded by electron cloud, with arrow showing the spin direction) coupled to a silicon single-electron transistor. A burst of microwaves (blue) is used to ‘write’ information on the electron spin.
Credit: Credit: Tony Melov

A research team led by Australian engineers has created the first working quantum bit based on a single atom in silicon, opening the way to ultra-powerful quantum computers of the future.

Related Articles


In a landmark paper published September 19 in the journal Nature, the team describes how it was able to both read and write information using the spin, or magnetic orientation, of an electron bound to a single phosphorus atom embedded in a silicon chip.

"For the first time, we have demonstrated the ability to represent and manipulate data on the spin to form a quantum bit, or 'qubit', the basic unit of data for a quantum computer," says Scientia Professor Andrew Dzurak. "This really is the key advance towards realising a silicon quantum computer based on single atoms."

Dr Andrea Morello and Professor Dzurak from the UNSW School of Electrical Engineering and Telecommunications lead the team. It includes researchers from the University of Melbourne and University College, London.

"This is a remarkable scientific achievement -- governing nature at its most fundamental level -- and has profound implications for quantum computing," says Dzurak.

Dr Morello says that quantum computers promise to solve complex problems that are currently impossible on even the world's largest supercomputers: "These include data-intensive problems, such as cracking modern encryption codes, searching databases, and modelling biological molecules and drugs."

The new finding follows on from a 2010 study also published in Nature, in which the same UNSW group demonstrated the ability to read the state of an electron's spin. Discovering how to write the spin state now completes the two-stage process required to operate a quantum bit.

The new result was achieved by using a microwave field to gain unprecedented control over an electron bound to a single phosphorus atom, which was implanted next to a specially-designed silicon transistor. Professor David Jamieson, of the University of Melbourne's School of Physics, led the team that precisely implanted the phosphorus atom into the silicon device.

UNSW PhD student Jarryd Pla, the lead author on the paper, says: "We have been able to isolate, measure and control an electron belonging to a single atom, all using a device that was made in a very similar way to everyday silicon computer chips."

As Dr Morello notes: "This is the quantum equivalent of typing a number on your keyboard. This has never been done before in silicon, a material that offers the advantage of being well understood scientifically and more easily adopted by industry. Our technology is fundamentally the same as is already being used in countless everyday electronic devices, and that's a trillion-dollar industry."

The team's next goal is to combine pairs of quantum bits to create a two-qubit logic gate -- the basic processing unit of a quantum computer.


Story Source:

The above story is based on materials provided by University of New South Wales. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jarryd J. Pla, Kuan Y. Tan, Juan P. Dehollain, Wee H. Lim, John J. L. Morton, David N. Jamieson, Andrew S. Dzurak, Andrea Morello. A single-atom electron spin qubit in silicon. Nature, 2012; DOI: 10.1038/nature11449

Cite This Page:

University of New South Wales. "Single-atom writer a landmark for quantum computing." ScienceDaily. ScienceDaily, 19 September 2012. <www.sciencedaily.com/releases/2012/09/120919135305.htm>.
University of New South Wales. (2012, September 19). Single-atom writer a landmark for quantum computing. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2012/09/120919135305.htm
University of New South Wales. "Single-atom writer a landmark for quantum computing." ScienceDaily. www.sciencedaily.com/releases/2012/09/120919135305.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins