Featured Research

from universities, journals, and other organizations

Computer simulations for multiscale systems can be faster, better, more reliable

Date:
September 20, 2012
Source:
University of Oregon
Summary:
Scientists have found a way to correctly reproduce not only the structure but also important thermodynamic quantities such as pressure and compressibility of a large, multiscale system at variable levels of molecular coarse-graining.

Anthony Clark and Jay McCarty.
Credit: Image courtesy of University of Oregon

University of Oregon scientists have found a way to correctly reproduce not only the structure but also important thermodynamic quantities such as pressure and compressibility of a large, multiscale system at variable levels of molecular coarse-graining.

Related Articles


The method is a mathematically driven predictive modeling of a real system, built on liquid state theory, and utilizing powerful computing resources. The team's theory appears in the Sept. 21 issue of the journal Physical Review Letters.

Understanding multiscale systems is of vital importance in biology and material engineering. Because physical properties of multiscale systems develop on an extended range of times and lengths -- with changes involving many orders of magnitude -- computer simulations at the atomic resolution can exceed even the most advanced computational capabilities.

In recent years theoretical coarse-graining methods have gained attention in the scientific community because they provide an efficient alternative to traditional simulations, which represent explicitly every atom of the molecular system. In course graining, atomistic-level information is removed to make computations at long time- and large length-scales possible. The key issue is how to develop reliable and controllable coarse-graining procedures. Most coarse-graining methods correctly predict the structure of a liquid, but they fall short in predicting thermodynamic properties such as pressure or compressibility.

The new theory has the capability to ensure both structural and thermodynamic consistency, said Marina G. Guenza, professor of theoretical physical chemistry and project leader.

Last year, in the journal Physical Review E, Guenza and doctoral student Ivan Lyubimov, a co-author of the new paper, documented a procedure to reconstruct the realistic dynamics of multiscale systems from the motion measured in dynamic simulations of coarse-grained macromolecules. In this newly published article, the same coarse-graining formalism is shown to reproduce correctly the pressure and compressibility of the system, providing a reliable method to simulate complex macromolecular systems in an extended range of length and timescales.

Thermodynamic properties are important in the mixing of liquid materials used in making plastics, said Anthony J. Clark, a UO doctoral student in physics and lead author of the new paper. "Pressure has been a high-level issue in coarse-graining," he said. "It is important to be able to reproduce the distribution of molecules in a system, and pressure is a hard physical quantity to predict. Our theory now will provide the interaction potentials of coarse-grained molecules, which correctly predict both the structure and the thermodynamics of the sample."

The improvements to the formula for the computational simulation mean that manufacturers soon may be able to use a computer code and input information for the materials they plan to mix and quickly determine the behavior of a finished product, said Guenza, a member of the UO's Institute of Theoretical Science, Materials Science Institute and Institute of Molecular Biology.

A problem in working with polymers, for example, is that they often don't blend easily. Controlling for thermodynamic components is vital.

"These molecules are very complex," said co-author Jay McCarty, a doctoral student in chemistry who derived the equations that prove the thermodynamic consistency of Clark's potential and ran the atomistic simulations the test the theory. "They move at different timescales and cover many lengthscales. Our goal is to bridge phenomena that happen at different scales at the molecular level."

Many manufacturing processes rely on often costly, time-consuming and wasteful trial-and-error procedures. While the scientific program is still under development to be extended to a larger number of systems, Guenza said, the recent developments have addressed major stumbling blocks.

On the horizon, she said, is a web-based computer program at the UO, which manufacturers and researchers will be able to access to run predictive coarse-graining simulations that will facilitate the study of polymeric systems and improve the efficiency of working with these samples.

"Dr. Guenza's work to improve our understanding of multi-scale systems has the potential to create new efficiencies in research and manufacturing," said Kimberly Andrews Espy, vice president for research and innovation, and dean of the graduate school. "It reflects the University of Oregon's commitment to re-engineering the science, manufacturing and business processes related to critical products with the aim of fostering a more sustainable future for our planet and its people."


Story Source:

The above story is based on materials provided by University of Oregon. Note: Materials may be edited for content and length.


Cite This Page:

University of Oregon. "Computer simulations for multiscale systems can be faster, better, more reliable." ScienceDaily. ScienceDaily, 20 September 2012. <www.sciencedaily.com/releases/2012/09/120920082703.htm>.
University of Oregon. (2012, September 20). Computer simulations for multiscale systems can be faster, better, more reliable. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2012/09/120920082703.htm
University of Oregon. "Computer simulations for multiscale systems can be faster, better, more reliable." ScienceDaily. www.sciencedaily.com/releases/2012/09/120920082703.htm (accessed November 1, 2014).

Share This



More Computers & Math News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Protests Stall Hungary's Internet Tax

Protests Stall Hungary's Internet Tax

Reuters - Business Video Online (Oct. 31, 2014) Hungary will shelve plans to introduce a tax on internet data traffic that has generated big protests over the past week. But as Amy Pollock reports the controversial issue hasn’t gone away entirely. Video provided by Reuters
Powered by NewsLook.com
Samsung's Incredible Shrinking Smartphone Profits

Samsung's Incredible Shrinking Smartphone Profits

Reuters - Business Video Online (Oct. 30, 2014) The world's top mobile maker is under severe pressure, delivering a 60 percent drop in Q3 profit as its handset business struggles. Turning it around may not prove easy, says Reuters' Jon Gordon. Video provided by Reuters
Powered by NewsLook.com
Ban On Wearable Cameras In Movie Theaters Surprises No One

Ban On Wearable Cameras In Movie Theaters Surprises No One

Newsy (Oct. 30, 2014) The Motion Picture Association of America and the National Association of Theatre Owners now prohibit wearable cameras such as Google Glass. Video provided by Newsy
Powered by NewsLook.com
Spain's New 'Google Tax' Makes News Feeds Pay For Links

Spain's New 'Google Tax' Makes News Feeds Pay For Links

Newsy (Oct. 30, 2014) Spanish lawmakers have passed new IP rules requiring aggregators to pay for linking to news sites, following a broader trend across the E.U. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins