Featured Research

from universities, journals, and other organizations

Genome-wide epigenomic screening reveals role of genes, cellular factors in thyroid disease

Date:
September 20, 2012
Source:
American Thyroid Association
Summary:
Genome-wide epigenomic screening can pinpoint disease-associated variants and identify novel genetic–epigenetic interactions in autoimmune thyroid diseases, according to new data.

Genome-wide epigenomic screening can pinpoint disease-associated variants and identify novel genetic-epigenetic interactions in autoimmune thyroid diseases, according to new data presented at the 82nd Annual Meeting of the American Thyroid Association (ATA) in Québec City, Québec, Canada.

Since cytokines are key mediators of tissue inflammation and infiltration, a team of researchers from Mount Sinai School of Medicine in New York City tested the hypothesis that inflammatory cytokines, specifically interferon-alpha, a prime cytokine in the etiology of autoimmune thyroid disease, promote thyroid cell dysfunction through epigenetic modifications of autoimmune thyroid diseases genes. Interferon-alpha (IFNa) has also been shown to precipitate autoimmune thyroid diseases when used as therapeutic agent. The researchers had previously shown that IFNa increases mRNA expression of major AITD susceptibility genes in both cell lines and a mouse model of IFNa thyroid expression.

Researchers mapped modifications of histone patterns [histone H3 mono- and trimethylated at Lys-4 (H3K4me1 and H3K4me3)] induced by IFNa at these loci using ChIP-seq in human thyroid cells. ChIP-seq data were integrated with RNA-seq and bioinformatic analyses. Integration of ChIP-seq and RNA-seq data showed that significantly upregulated pathways included genes characterized by H3K4me3 enrichment in the 5'-regions, demonstrating a correlation between H3K4me3 and pathway activation by IFNa. Most upregulated genes/pathways participate in innate immunity and host defense response. IFNa induced enrichment of H3K4me1 mostly in noncoding gene regions.

Researchers next used the potential of H3K4me1 to mark regulatory regions to identify functional AITD-associated single-nucleotide polymorphisms (SNPs). An AITD-associated SNPs, in thyroglobulin (TG) gene was marked by enrichment of H3K4me1. This same SNP was previously shown by us through bioinformatic analyses followed by ChIP, luciferase reporter, and siRNA assays to bind interferon regulatory factor-1 (IRF1) and to modulate TG promoter activity in an allele-dependent manner.

"It is well-established that autoimmune thyroid diseases result from interactions between genetic and environmental factors. However, until now, the complex interplay between genes and intra- and extra-cellular factors to trigger pathological autoimmune responses has remained undefined," said Douglas Forrest, PhD, of the National Institute of Diabetes and Digestive and Kidney Diseases.


Story Source:

The above story is based on materials provided by American Thyroid Association. Note: Materials may be edited for content and length.


Cite This Page:

American Thyroid Association. "Genome-wide epigenomic screening reveals role of genes, cellular factors in thyroid disease." ScienceDaily. ScienceDaily, 20 September 2012. <www.sciencedaily.com/releases/2012/09/120920115632.htm>.
American Thyroid Association. (2012, September 20). Genome-wide epigenomic screening reveals role of genes, cellular factors in thyroid disease. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2012/09/120920115632.htm
American Thyroid Association. "Genome-wide epigenomic screening reveals role of genes, cellular factors in thyroid disease." ScienceDaily. www.sciencedaily.com/releases/2012/09/120920115632.htm (accessed October 2, 2014).

Share This



More Health & Medicine News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pregnancy Spacing Could Have Big Impact On Autism Risks

Pregnancy Spacing Could Have Big Impact On Autism Risks

Newsy (Oct. 1, 2014) — A new study says children born less than one year and more than five years after a sibling can have an increased risk for autism. Video provided by Newsy
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) — A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com
Insertable Cardiac Monitor

Insertable Cardiac Monitor

Ivanhoe (Oct. 1, 2014) — A heart monitor the size of a paperclip that can save your life. The “Reveal Linq” allows a doctor to monitor patients with A-Fib on a continuous basis for up to 3 years! Video provided by Ivanhoe
Powered by NewsLook.com
Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) — Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins