Featured Research

from universities, journals, and other organizations

Civil engineers destroy test levee in the Netherlands

Date:
September 20, 2012
Source:
Rensselaer Polytechnic Institute (RPI)
Summary:
Civil engineers collapsed a full-scale dike this week in the Netherlands. The test dike was embedded with advanced sensors and traditional measurement instruments, and results of the study are expected to help validate powerful new technologies for monitoring the health of aging flood-control infrastructure.

Civil engineers from Rensselaer Polytechnic Institute were part of an international research team that collapsed a full-scale dike this week in the Netherlands. The test dike was embedded with advanced sensors and traditional measurement instruments, and results of the study are expected to help validate powerful new technologies for monitoring the health of aging flood-control infrastructure.
Credit: Rensselaer

Civil engineers from Rensselaer Polytechnic Institute were part of an international research team that collapsed a full-scale dike this week in the Netherlands. The test dike was embedded with advanced sensors and traditional measurement instruments, and results of the study are expected to help validate powerful new technologies for monitoring the health of aging flood-control infrastructure.

Related Articles


The dike was situated in a specially constructed basin, which the researchers filled with water. The slow addition of water into the basin increased the pressure on the dike. Water forced its way into the dike, and eventually softened the bottom of the dike and shifted the earth underneath, prompting the overall structure to collapse. The study was led by Dutch research institute Deltares, in partnership with Rensselaer and 14 other companies and universities from around the world. It was the research team's third full-scale levee test collapse this summer. The full results of the tests will be presented at the Flood Risk Conference in November 2012 in Rotterdam, the Netherlands.

"The failure of flood-control infrastructure is very real, and can lead to catastrophic flooding as we unfortunately witnessed in 2005 during Hurricane Katrina," said Tarek Abdoun, associate dean for research and graduate programs in the School of Engineering and the Judith and Thomas Iovino '73 Career Development Professor in the Department of Civil and Environmental Engineering at Rensselaer. "A large-scale test like this can help supply us with invaluable data to inform and validate our efforts to create a long-term, real-time monitoring system that can assess the health of levees and help identify the vulnerability of levee or dam sections before they fail."

Rensselaer Research Assistant Professor Victoria Gene Bennett and Associate Professor Mourad Zeghal are collaborating on the project with Abdoun. Their participation in the Deltares project was funded as part of a three-year grant from the U.S. Department of Homeland Security's Science and Technology Directorate. Abdoun, Bennett, and Zeghal are faculty members of the Rensselaer Center for Earthquake Engineering Simulation (CEES), which is a part of the George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES) Program of the National Science Foundation.

The collapsed dike was fit with a large number of different sensors, including SAPP (shape-acceleration-pore pressure) arrays that were developed through a partnership between Rensselaer and industrial collaborator Measurand. SAPP sensor arrays are designed to be installed into the ground, beneath and around levees and dams. The cost-effective arrays accurately measure soil deformation, vibration, and pore pressure at critical points of a flood-control system.

These SAPP arrays are a critical part of an ongoing Rensselaer-led research project to create an integrated suite of technologies and methods for ensuring the reliability and safety of flood-control infrastructure. The project, funded by the U.S. National Institute of Standards and Technology's Technology Innovation Program, pairs SAPP measurements with GPS and InSAR, or satellite-based interferometric synthetic aperture radar measurements. Accurate down to the millimeter, InSAR captures and analyzes high-resolution satellite images of levees and dams, and measures how far these structures have shifted or sunk due to environmental changes such as rain, floods, tremors, or even aging. To bridge the gap between InSAR satellite data and below-ground SAPP measurements, the researchers will augment the framework with a network of high-resolution GPS sensors to track the physical movement of structures and the ground surface.

"Through our joint venture partnership with Geocomp Corp., a dense grid of instruments including SAPPs, GPS, and radar reflectors has been installed at the London Ave. Canal in New Orleans. The real-time data collected from this site, and others in the New Orleans area, will make performance information available during this and upcoming hurricane seasons, in addition to providing calibration data for health assessment algorithms," Bennett said. Led by Zeghal, this project is a collaboration with Bennett, Abdoun, and Birsen Yazici, professor in the Department of Electrical, Computer, and Systems Engineering and the Department of Biomedical Engineering at Rensselaer.

Data collected from the SAPP, InSAR, and GPS systems are integrated into an automated "smart network" that provides a long-term continuous assessment of the health of levee systems from both underground and aerial perspectives. In the case of a levee failure, data collected by the automated monitoring system will be used to organize a quick emergency response to repair levees and minimize the extent of flooding. Collected data is also being paired with computational simulation techniques to build accurate, predictive models of how different levees will react to different environmental conditions. These models help inform plans to mitigate levee damage and respond to disasters, and provide quantitative assessments that will better allow federal and local governments to prioritize where infrastructure repairs are most needed.

In the United States, the national flood-control infrastructure is aging and its structural health is deteriorating, Abdoun said. The system is composed of more than 5,600 km of levees, and 43 percent of the U.S. population lives in counties with levees designed to provide some level of protection from flooding. Some of these levees are as old as 150 years. In 2009, the American Society of Civil Engineers Report Card for America's Infrastructure gave the condition of the nation's dams a grade of D, and levees a grade of D-minus.


Story Source:

The above story is based on materials provided by Rensselaer Polytechnic Institute (RPI). Note: Materials may be edited for content and length.


Cite This Page:

Rensselaer Polytechnic Institute (RPI). "Civil engineers destroy test levee in the Netherlands." ScienceDaily. ScienceDaily, 20 September 2012. <www.sciencedaily.com/releases/2012/09/120920135220.htm>.
Rensselaer Polytechnic Institute (RPI). (2012, September 20). Civil engineers destroy test levee in the Netherlands. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2012/09/120920135220.htm
Rensselaer Polytechnic Institute (RPI). "Civil engineers destroy test levee in the Netherlands." ScienceDaily. www.sciencedaily.com/releases/2012/09/120920135220.htm (accessed October 25, 2014).

Share This



More Earth & Climate News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins