Featured Research

from universities, journals, and other organizations

Tissues tell the tale: Non-invasive optical technique detects cancer by looking under the skin

Date:
September 24, 2012
Source:
Optical Society of America
Summary:
An international team of researchers has developed an advanced optics system to noninvasively map out the network of tiny blood vessels beneath the outer layer of patients' skin, potentially revealing telltale signs of disease.

Healthy vs. Diseased Skin Vasculature: Image (a) on the left shows a healthy network of blood vessels in the lower layer of skin on the hand palm. Image (b) shows blood vessels supplying a basal cell carcinoma on the forehead. The effects of disease on the vascular are evidenced by the branching pattern of vessels in image (b), with abnormally large vessels for a depth range similar to image (a). Both images show a 2x2 millimeter area.
Credit: Medical University Vienna/Biomedical Optics Express

The trained eye of a dermatologist can identify many types of skin lesions, but human sight only goes so far. Now an international team of researchers has developed an advanced optics system to noninvasively map out the network of tiny blood vessels beneath the outer layer of patients' skin, potentially revealing telltale signs of disease. Such high resolution 3-D images could one day help doctors better diagnose, monitor, and treat skin cancer and other skin conditions.

The research was published September 24 in the Optical Society's (OSA) open-access journal Biomedical Optics Express.

Researchers from Medical University Vienna (MUW) in Austria and the Ludwig-Maximilians University in Munich, Germany, used a technique called optical coherence tomography (OCT) to "see" beneath the surface of skin. The researchers tested their system on a range of different skin conditions, including a healthy human palm, allergy-induced eczema on the forearm, dermatitis on the forehead, and two cases of basal cell carcinoma -- the most common type of skin cancer -- on the face. Compared to healthy skin, the network of vessels supplying blood to the tested lesions showed significantly altered patterns. "The condition of the vascular network carries important information on tissue health and its nutrition," says Rainer Leitgeb, a researcher at MUW and the study's principal investigator. "Currently, the value of this information is not utilized to its full extent."

Ophthalmologists have used OCT since the 1990s to image different parts of the eye and the technology has recently attracted increased interest from dermatologists. OCT has many advantages over other imaging techniques: It is non-invasive and provides high-resolution images at high speed. OCT is typically used to show tissue structure, but it can also reveal the pattern of blood vessels, which carry important clues about disease, by capitalizing on the unique optical properties of flowing blood cells.

The researchers at MUW are the first to use OCT to visualize the network of blood vessels in human skin that feed cancerous skin lesions. To maximize the quality of the images the team employed a high-tech laser light source developed by collaborators from the Ludwig-Maximilians University. The laser enabled unprecedented high-speed imaging and operated at a near-infrared wavelength that gave better penetration into skin tissue.

"High speed is of paramount importance in order to image lesions in vivo and in situ while minimizing the effect of involuntary patient motion," explains researcher Cedric Blatter of MUW. The device also shapes the light in a special way forming a Bessel beam, which can reform, or heal, its shape even if portions of it are blocked. The beam enabled the researchers to keep the images in focus across a depth range of approximately 1 millimeter.

The team's images of basal cell carcinoma showed a dense network of unorganized blood vessels, with large vessels abnormally close to the skin surface. The larger vessels branch into secondary vessels that supply blood to energy-hungry tumor regions. The images, together with information about blood flow rates and tissue structure, could yield important insights into the metabolic demands of tumors during different growth stages.

The imaging system shows the most promise for clinical application in the diagnosis and treatment of skin cancer, the researchers believe. "We hope that improved in-depth diagnosis of tissue alterations due to disease might help to reduce the number of biopsies by providing better guidance," says Leitgeb. The system could also be used by doctors to assess how quickly a tumor is likely to grow and spread, as well as to monitor the effectiveness of treatments such as topical chemotherapy. "Treatment monitoring may also be expanded toward inflammatory and auto-immune related dermatological conditions," Blatter notes.

Going forward, the researchers would like to increase the field of view of the device so that they can image the full lesion along with its border to healthy tissue. They are also working on speeding up the post-processing of the optical signal to enable live vasculature display, and improving the portability of the system, which currently occupies an area about half the size of an office desk. "We believe that in the future our method will help to simplify non-invasive dermatological in vivo diagnostics and allow for in-depth treatment monitoring," says Blatter.


Story Source:

The above story is based on materials provided by Optical Society of America. Note: Materials may be edited for content and length.


Journal Reference:

  1. Cedric Blatter, Jessika Weingast, Aneesh Alex, Branislav Grajciar, Wolfgang Wieser, Wolfgang Drexler, Robert Huber, Rainer A. Leitgeb. In situ structural and microangiographic assessment of human skin lesions with high-speed OCT. Biomedical Optics Express, 2012; 3 (10): 2636 DOI: 10.1364/BOE.3.002636

Cite This Page:

Optical Society of America. "Tissues tell the tale: Non-invasive optical technique detects cancer by looking under the skin." ScienceDaily. ScienceDaily, 24 September 2012. <www.sciencedaily.com/releases/2012/09/120924142924.htm>.
Optical Society of America. (2012, September 24). Tissues tell the tale: Non-invasive optical technique detects cancer by looking under the skin. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2012/09/120924142924.htm
Optical Society of America. "Tissues tell the tale: Non-invasive optical technique detects cancer by looking under the skin." ScienceDaily. www.sciencedaily.com/releases/2012/09/120924142924.htm (accessed April 24, 2014).

Share This



More Health & Medicine News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
Study Says Most Crime Not Linked To Mental Illness

Study Says Most Crime Not Linked To Mental Illness

Newsy (Apr. 22, 2014) A new study finds most crimes committed by people with mental illness are not caused by symptoms of their illness or disorder. Video provided by Newsy
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins