Featured Research

from universities, journals, and other organizations

Novel materials become multifunctional at ultimate quantum limit

Date:
September 25, 2012
Source:
University of Arkansas, Fayetteville
Summary:
Physicists have examined the lower limits of novel materials called complex oxides and discovered that unlike conventional semiconductors the materials not only conduct electricity, but also develop unusual magnetic properties.

A University of Arkansas physicist and his colleagues have examined the lower limits of novel materials called complex oxides and discovered that unlike conventional semiconductors the materials not only conduct electricity, but also develop unusual magnetic properties.

Related Articles


Jak Chakhalian, Jian Liu, Derek Meyers and Benjamin Gray of the University of Arkansas and John W. Freeland and Phillip Ryan of the Advanced Photon Source at Argonne National Laboratory present their ideas in Physical Review Letters.

"Contrary to what we have today in modern microelectronics devices based on silicon, here in a single quantum well, which is just four nanometers thick, we now have several functionalities in one device layer," said Chakhalian, professor of physics and holder of the Charles and Clydene Scharlau Chair in the J. William Fulbright College of Arts and Sciences. "Engineers can use this class of material to devise new multifunctional devices based on the electrons' spin."

The microelectronic materials -- semiconductors -- used in today's computers, have almost reached the lower limitation for size and functionality. Computers run on several semiconducting devices layered together in the very smallest of spaces, known as quantum wells, where nanoscale layers of a semiconducting material are sandwiched between two nanoscale layers of a non-conducting material. However, the researchers found that by using complex oxides with correlated electrons confined to quantum well geometry, they added a new dimension to the mix.

The new structure is based on the concept of correlated charge carriers, like those found in rust, or iron oxide. In rust, if one electron does something, all of the other electrons "know" about it. This phenomenon, called correlated electrons, does not exist in silicon-based materials that run today's computers, televisions, complex medical equipment,power cell phones and keep the electricity on in homes.

"In normal materials used today, electrons don't care about the movement of one another," Chakhalian said. "We can predict their properties almost on the 'back of an envelope' with the help of powerful computers." However, with correlated materials, the calculations for the movement of one electron involve tracking the interactions with billions of electrons, and this is beyond modern theory capabilities.

Chakhalian and his colleagues went down to four atomic layers of a correlated complex oxide material based on nickel and sandwiched it in between two layers of non-conducting oxide material based on aluminum. Unlike the semiconducting materials, the complex oxide structure revealed the unexpected presence of both electronic and magnetic properties.

These multiple properties in a single material may allow the semiconductor industry to push the limits of current conventional computers and develop multiple functions for a single device, possibly allowing everyday electronics to become smaller and faster than they are today.

Chakhalian is a professor in the Institute for Nanoscience and Engineering.


Story Source:

The above story is based on materials provided by University of Arkansas, Fayetteville. Note: Materials may be edited for content and length.


Cite This Page:

University of Arkansas, Fayetteville. "Novel materials become multifunctional at ultimate quantum limit." ScienceDaily. ScienceDaily, 25 September 2012. <www.sciencedaily.com/releases/2012/09/120925091346.htm>.
University of Arkansas, Fayetteville. (2012, September 25). Novel materials become multifunctional at ultimate quantum limit. ScienceDaily. Retrieved March 28, 2015 from www.sciencedaily.com/releases/2012/09/120925091346.htm
University of Arkansas, Fayetteville. "Novel materials become multifunctional at ultimate quantum limit." ScienceDaily. www.sciencedaily.com/releases/2012/09/120925091346.htm (accessed March 28, 2015).

Share This


More From ScienceDaily



More Computers & Math News

Saturday, March 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Facebook Building Plane-Sized Drones For Global Internet

Facebook Building Plane-Sized Drones For Global Internet

Newsy (Mar. 27, 2015) Facebook on Thursday revealed more details about its Internet-connected drone project. The drone is bigger than a 737, but lighter than a car. Video provided by Newsy
Powered by NewsLook.com
Robot Returns from International Space Station and Sets Two Guinness World Records

Robot Returns from International Space Station and Sets Two Guinness World Records

Reuters - Light News Video Online (Mar. 27, 2015) The companion robot "Kirobo" returns to earth from the International Space Station and sets two Guinness World Records. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com
Smart Bracelet Changes Design With the Touch of a Button

Smart Bracelet Changes Design With the Touch of a Button

Reuters - Innovations Video Online (Mar. 27, 2015) Interactive jewellery that allows users to change designs and doesn&apos;t need charging. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com
Twitter's Periscope New Rival for Meerkat

Twitter's Periscope New Rival for Meerkat

Reuters - Business Video Online (Mar. 26, 2015) Twitter has unveiled Periscope, its live-streaming app to rival Meerkat and other emerging apps that have captured the attention of the social media industry. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins