Featured Research

from universities, journals, and other organizations

Scientists find molecular link to obesity/insulin resistance in mice

Date:
September 27, 2012
Source:
Dana-Farber Cancer Institute
Summary:
Researchers have identified a molecular link between thermogenesis and the development of inflammation in fat cells. Activating molecular switch in white fat cells enabled mice to eat a high-calorie diet without becoming obese or developing the inflammation that causes insulin resistance, report scientists.

Flipping a newly discovered molecular switch in white fat cells enabled mice to eat a high-calorie diet without becoming obese or developing the inflammation that causes insulin resistance, report scientists from Dana-Farber Cancer Institute.

Related Articles


The researchers say the results, to be published in the Sept. 28 issue of the journal Cell, provide the first known molecular link between thermogenesis (burning calories to produce heat) and the development of inflammation in fat cells.

These two processes had been previously thought to be controlled separately. Thermogenesis plays an important role in metabolism and maintaining healthy weight. Inflammation triggers insulin resistance, a precursor of diabetes.

The researchers, led by Bruce Spiegelman, PhD, found that the protein TRPV4, a switch molecule, is highly expressed in white fat cells, which store excess calories and become engorged in obese individuals.

For this study, the investigators bred mice lacking TRPV4 or administered a drug to deactivate it. In the absence of TRPV4, white cells turned on a set of genes that consume energy to produce heat, rather than storing the energy as excess fat. This "thermogenic" process normally occurs in brown or beige fat (commonly called "good fat"), which is found mostly in small animals and human infants to protect against cold.

When the TRPV4-deficient mice were put on a high-calorie diet for several weeks, they did not become obese, and their level of fat cell inflammation and insulin resistance was lowered.

"We have identified a target that, when inhibited, can activate beige adipose tissue and suppress inflammation," said Spiegelman. "This role of TRPV4 as a mediator for both the thermogenic and pro-inflammatory programs in adipocytes, or fat cells, could offer an attractive target for treating obesity and related metabolic diseases."

A co-activator protein, PGC-1 alpha, previously discovered in the Spiegelman laboratory, helps turn on thermogenesis to produce heat. In the new experiments, Spiegelman and his colleagues demonstrated that TRPV4 blocks PGC-1 alpha in white fat cells. Inhibiting TRPV4 in the experimental mice raised the expression of PGC-1 alpha and sparked thermogenesis.

An experimental compound, GSK205, was used to inhibit TRPV4 in the animal studies. Spiegelman said that this technology has been licensed for further development to Ember Therapeutics, a company he co-founded. Spiegelman is an Ember consultant and shareholder.

In terms of potential therapies, Spiegelman said that "any single new approach to something as complicated as metabolic disease is unlikely to work, but our experiments with TRPV4 showed the effectiveness of this strategy and it appears to be quite safe."

The first author of the report is Li Ye, PhD, in the Spiegelman lab. Other authors are from Dana-Farber, Boston Children's Hospital, The Scripps Research Institute, Jupiter, Fla., Duke University Medical Center, Durham, N.C., and Massachusetts General Hospital.

The research was supported in part by National Institutes of Health grants (DK031405 and DK080261).


Story Source:

The above story is based on materials provided by Dana-Farber Cancer Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Li Ye, Sandra Kleiner, Jun Wu, Rajan Sah, Rana K. Gupta, Alexander S. Banks, Paul Cohen, Melin J. Khandekar, Pontus Boström, Rina J. Mepani, Dina Laznik, Theodore M. Kamenecka, Xinyi Song, Wolfgang Liedtke, Vamsi K. Mootha, Pere Puigserver, Patrick R. Griffin, David E. Clapham, Bruce M. Spiegelman. TRPV4 Is a Regulator of Adipose Oxidative Metabolism, Inflammation, and Energy Homeostasis. Cell, 2012; 151 (1): 96 DOI: 10.1016/j.cell.2012.08.034

Cite This Page:

Dana-Farber Cancer Institute. "Scientists find molecular link to obesity/insulin resistance in mice." ScienceDaily. ScienceDaily, 27 September 2012. <www.sciencedaily.com/releases/2012/09/120927123642.htm>.
Dana-Farber Cancer Institute. (2012, September 27). Scientists find molecular link to obesity/insulin resistance in mice. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2012/09/120927123642.htm
Dana-Farber Cancer Institute. "Scientists find molecular link to obesity/insulin resistance in mice." ScienceDaily. www.sciencedaily.com/releases/2012/09/120927123642.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins