Featured Research

from universities, journals, and other organizations

Ordered atoms in glass materials discovered

Date:
October 2, 2012
Source:
DOE/Ames Laboratory
Summary:
Scientists have discovered the underlying order in metallic glasses, which may hold the key to the ability to create new high-tech alloys with specific properties.

Scientists at the U.S. Department of Energy’s (DOE) Ames Laboratory have discovered the underlying order in metallic glasses, which may hold the key to the ability to create new high-tech alloys with specific properties.
Credit: Image courtesy of DOE/Ames Laboratory

Scientists at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered the underlying order in metallic glasses, which may hold the key to the ability to create new high-tech alloys with specific properties.

Glass materials may have a far less randomly arranged structure than formerly thought.

Over the years, the ideas of how metallic glasses form have been evolving, from just a random packing, to very small ordered clusters, to realizing that longer range chemical and topological order exists.

But by studying the structure of a metallic glass alloy formed at varying cooling rates, Matthew Kramer (in the photo at left) and his team of fellow scientists at the Ames Laboratory have been able to show there is some organization to these structures. These findings were recently published in Scientific Reports, and in a second paper in Physical Review Letters with Paul Voyles' team from University of Madison, Wisc.

"This has been one of those burning questions in material science for a while, how to describe these disordered systems. Our studies are showing this underlying structure. It's diffuse, but it's there. It's been suspected for a long time and even the general structures have been postulated, but to what degree and how to quantify them, that has been the trick," Kramer said.

Kramer's team of scientists used melt spinning to form the alloy samples, a technique that supercools liquids by ejecting it in a stream onto a rapidly spinning copper wheel. These high cooling rates allows the liquid to form a non-crystalline alloy, or metallic glass.

"It's not only the chemistry of that metal that's important. In many cases, how you get it to the solid state, how it solidifies is also a critical factor," said Kramer.

Data was gathered using a high energy X-ray beam at the Advanced Photon Source at Argonne National Laboratory, atom probe chemical analysis, and computational modeling.

The researchers found there are local configurations of the atoms that tend toward a more ordered structure compared to looking at the whole structure. Kramer compared it to design elements in a complex wallpaper style.

"You'll see a little individual design in that wallpaper, and it has a bit of intricacy. That smaller, complex design, you'll see it repeated throughout the wallpaper. In crystallography we call that a motif. A crystalline solid has those motifs in a very ordered array. In the liquid structure, these motifs are still present, but are shuffled around a bit. They're not marching in rows anymore."

Kramer said in liquids these motifs, while not well organized in repeating patterns like crystalline structures, do tend to fall into discrete distances from each other within a certain range.

Not only that, they begin to organize themselves into interconnected networks, similar to the polymeric chains seen in silicate glass and polymers.

"It's these interconnected networks and the degree to which they develop, which probably controls the ability to go from a liquid state to a glassy state with a metal," said Kramer.

Understanding exactly how these metallic glasses form is the key to being able to manipulate their structure for development of new alloys.

"Developing new materials has largely been an Edisonian process. People guess at some interesting alloy compositions, they do some sort of casting, and they look and see what they get. We're trying to get at the challenge in looking for new materials in a different way," Kramer explained. "What might the arrangement of atoms need to be in order to provide the properties we want? Can you actually in fact create these novel structures? By understanding these fundamental building blocks and arranging them in new ways, can we create materials with new or different properties? These are the questions we want to answer."

The research is supported by the U.S. Department of Energy Office of Science through the Ames Laboratory.


Story Source:

The above story is based on materials provided by DOE/Ames Laboratory. Note: Materials may be edited for content and length.


Journal References:

  1. X. W. Fang, C. Z. Wang, S. G. Hao, M. J. Kramer, Y. X. Yao, M. I. Mendelev, Z. J. Ding, R. E. Napolitano, K. M. Ho. Spatially Resolved Distribution Function and the Medium-Range Order in Metallic Liquid and Glass. Scientific Reports, 2011; 1 DOI: 10.1038/srep00194
  2. Jinwoo Hwang, Z. Melgarejo, Y. Kalay, I. Kalay, M. Kramer, D. Stone, P. Voyles. Nanoscale Structure and Structural Relaxation in Zr_{50}Cu_{45}Al_{5} Bulk Metallic Glass. Physical Review Letters, 2012; 108 (19) DOI: 10.1103/PhysRevLett.108.195505

Cite This Page:

DOE/Ames Laboratory. "Ordered atoms in glass materials discovered." ScienceDaily. ScienceDaily, 2 October 2012. <www.sciencedaily.com/releases/2012/10/121002145750.htm>.
DOE/Ames Laboratory. (2012, October 2). Ordered atoms in glass materials discovered. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2012/10/121002145750.htm
DOE/Ames Laboratory. "Ordered atoms in glass materials discovered." ScienceDaily. www.sciencedaily.com/releases/2012/10/121002145750.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) — Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins