Featured Research

from universities, journals, and other organizations

Insects a prime driver in plant evolution and diversity

Date:
October 4, 2012
Source:
University of Toronto
Summary:
Take a good look around on your next nature hike. Not only are you experiencing the wonders of the outdoors -- you're probably also witnessing evolution in action.

A caterpillar of the evening primrose moth (Schinia florida) devouring a flower bud of common evening primrose (Oenothera biennis). These moths exclusively feed on the flowers and fruits of evening primrose and in response to natural selection imposed by this and other specialist moths, evening primrose populations evolve to flower later and to produce high levels of toxic chemicals called ellagitannins in their fruits. This evolution effectively reduces damage of the plant’s reproductive organs and progeny.
Credit: Marc Johnson

Take a good look around on your next nature hike. Not only are you experiencing the wonders of the outdoors -- you're probably also witnessing evolution in action.

New research from the University of Toronto Mississauga (UTM) on the effect of insects on plant populations has shown that evolution can happen more quickly than was previously assumed, even over a single generation. The study is to be published in the Oct. 5 issue of Science.

"Scientists have long hypothesized that the interaction between plants and insects has led to much of the diversity we see among plants, including crops, but until now we had limited direct experimental evidence," says Marc Johnson, Assistant Professor in the UTM Department of Biology. "This research fills a fundamental gap in our understanding of how natural selection by insects causes evolutionary changes in plants as they adapt, and demonstrates how rapidly these changes can happen in nature."

Johnson and his collaborators from Cornell University, University of Montana and University of Turku in Finland, planted evening primrose, a typically self-fertilizing plant with genetically identical offspring, in two sets of plots. Each plot initially contained 60 plants of 18 different genotypes (plants that contain different sets of mutations).

To test whether insects drive the evolution of plant defenses, one set of plots was kept free of insects with a regular biweekly application of insecticide over the entire study period. The other set of plots received natural levels of insects.

The plots were left to grow without other interference for five years. Each year, Johnson and his collaborators counted the number and types of plants colonizing the plots. They also analyzed the changing frequencies of the different evening primrose genotypes and the traits associated with these genotypes.

Johnson says that evolution, which is simply a change in genotype frequency over time, was observed in all plots after only a single generation. Plant populations began to diverge significantly in response to insect attack in as few as three to four generations. For instance, plants that were not treated with insecticide had increases in the frequencies of genotypes associated with higher levels of toxic chemicals in the fruits, which made them unpalatable to seed predator moths. Plants that flowered later, and thus avoided insect predators, also increased in frequency.

Johnson says the findings also show that evolution might be an important mechanism that causes changes in whole ecosystems. "As these plant populations evolve, their traits change and influence their interactions with insects and other plant species, which in turn may evolve adaptations to cope with those changes," says Johnson. "The abundance and competitiveness of the plant populations is changing. Evolution can change the ecology and the function of organisms and entire ecosystems."

Additional ecological changes occurred in the plots when insects were removed. Competitor plants, such as dandelion, colonized both sets of plots but were more abundant in plots without insects. This in turn reduced the number of evening primrose plants. The dandelion used more resources and also potentially prevented light from reaching the evening primrose seeds, impacting seed germination. According to Johnson, these ecological changes were the result of the suppression of a moth caterpillar that preferred to feed on dandelion.

"What this research shows is that changes in these plant populations were not the result of genetic drift, but directly due to natural selection by insects on plants," says Johnson. "It also demonstrates how rapidly evolutionary change can occur -- not over millennia, but over years, and all around us."


Story Source:

The above story is based on materials provided by University of Toronto. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. A. Agrawal, A. P. Hastings, M. T. J. Johnson, J. L. Maron, J.-P. Salminen. Insect Herbivores Drive Real-Time Ecological and Evolutionary Change in Plant Populations. Science, 2012; 338 (6103): 113 DOI: 10.1126/science.1225977

Cite This Page:

University of Toronto. "Insects a prime driver in plant evolution and diversity." ScienceDaily. ScienceDaily, 4 October 2012. <www.sciencedaily.com/releases/2012/10/121004141745.htm>.
University of Toronto. (2012, October 4). Insects a prime driver in plant evolution and diversity. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2012/10/121004141745.htm
University of Toronto. "Insects a prime driver in plant evolution and diversity." ScienceDaily. www.sciencedaily.com/releases/2012/10/121004141745.htm (accessed August 29, 2014).

Share This




More Plants & Animals News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Raw: Australian Sheep Gets Long Overdue Haircut

Raw: Australian Sheep Gets Long Overdue Haircut

AP (Aug. 28, 2014) Hoping to break the record for world's wooliest, Shaun the sheep came up 10 pounds shy with his fleece weighing over 50 pounds after being shorn for the first time in years. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Minds Blown: Scientists Develop Fish That Walk On Land

Minds Blown: Scientists Develop Fish That Walk On Land

Newsy (Aug. 28, 2014) Canadian scientists looking into the very first land animals took a fish out of water and forced it to walk. Video provided by Newsy
Powered by NewsLook.com
Fake Dogs Scare Real Geese from Wis. Park

Fake Dogs Scare Real Geese from Wis. Park

AP (Aug. 28, 2014) Parks officials in Stevens Point, Wisconsin had a fowl problem. Canadian Geese were making a mess of a park, so officials enlisted cardboard versions of man's best friend. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins