Featured Research

from universities, journals, and other organizations

Miniaturization of data storage devices? Origin of ultra-fast manipulation of domain walls discovered

Date:
October 5, 2012
Source:
Universität Mainz
Summary:
Researchers have found a surprising effect that leads in ferromagnetic materials to a spatially varying magnetization manipulation on an ultrafast timescale. This effect could be the key to further miniaturization and performance increase of magnetic data storage devices.

Magnetic force microscopy image of a 10µm X 10µm sized sample showing a labyrinth-type magnetic domain structure. The magnetization is oriented perpendicularly to the surface (white: magnetization pointing out of the plane; brown: magnetization pointing into the plane).
Credit: photo/©: Bastian Pfau, TU Berlin

An international team of researchers has found, at the free electron laser FLASH in Germany, a surprising effect that leads in ferromagnetic materials to a spatially varying magnetization manipulation on an ultrafast timescale. This effect could be the key to further miniaturization and performance increase of magnetic data storage devices. From Mainz, the group of Professor Dr. Mathias Kläui from the Institute of Physics at Johannes Gutenberg University Mainz and in particular Felix Büttner, a member of the Graduate School of Excellence "Materials Science in Mainz," were involved.

The results have been published in the current issue of Nature Communications.

It is known that magnetization can be manipulated by short light pulses but so far the spatially-resolved magnetization change could not be determined due to the limited spatial resolution of conventional optical techniques. Since most of the ferromagnetic materials consist of multiple domains with different magnetization directions, the local change of the magnetization in these domains and at the interfaces between the domains, i.e. at the so-called domain walls, is of particular interest. At the FLASH free electron laser at the DESY Research Center in Hamburg, results were obtained that are in agreement with a recently theoretically predicted mechanism: due to the laser pulses, highly excited electrons are generated that move quickly through the material. They thus move from one domain into a neighboring domain with a different magnetization direction. Since the electrons carry part of the magnetization, they manipulate the magnetization in the domains as they move across a domain wall. This means that domain walls can change their geometry on the fs time scale.

As domain walls are also used in memory devices, such as the racetrack memory, these investigations could be the first step to improving the performance of such devices. The racetrack memory is a development by IBM and could in the future be a fast and low power alternative to conventional random access memory or hard drives.

The experiments were carried out by the researchers from Johannes Gutenberg University Mainz (JGU) with colleagues from TU Berlin, the universities of Hamburg and Paris, and six further research institutes at the free electron laser FLASH at DESY in Hamburg. The samples investigated consist of a cobalt-platinum multilayer system, which forms labyrinth-type domain structures.


Story Source:

The above story is based on materials provided by Universität Mainz. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. Pfau, S. Schaffert, L. Müller, C. Gutt, A. Al-Shemmary, F. Büttner, R. Delaunay, S. Düsterer, S. Flewett, R. Frömter, J. Geilhufe, E. Guehrs, C.M. Günther, R. Hawaldar, M. Hille, N. Jaouen, A. Kobs, K. Li, J. Mohanty, H. Redlin, W.F. Schlotter, D. Stickler, R. Treusch, B. Vodungbo, M. Kläui, H.P. Oepen, J. Lüning, G. Grübel, S. Eisebitt. Ultrafast optical demagnetization manipulates nanoscale spin structure in domain walls. Nature Communications, 2012; 3: 1100 DOI: 10.1038/ncomms2108

Cite This Page:

Universität Mainz. "Miniaturization of data storage devices? Origin of ultra-fast manipulation of domain walls discovered." ScienceDaily. ScienceDaily, 5 October 2012. <www.sciencedaily.com/releases/2012/10/121005123738.htm>.
Universität Mainz. (2012, October 5). Miniaturization of data storage devices? Origin of ultra-fast manipulation of domain walls discovered. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2012/10/121005123738.htm
Universität Mainz. "Miniaturization of data storage devices? Origin of ultra-fast manipulation of domain walls discovered." ScienceDaily. www.sciencedaily.com/releases/2012/10/121005123738.htm (accessed July 26, 2014).

Share This




More Matter & Energy News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) — Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) — When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins