Featured Research

from universities, journals, and other organizations

Surprising solution to fly eye mystery

Date:
October 11, 2012
Source:
University of Cambridge
Summary:
Fly eyes have the fastest visual responses in the animal kingdom, but how they achieve this has long been an enigma. A new study shows that their rapid vision may be a result of their photoreceptors -- specialized cells found in the retina -- physically contracting in response to light.

Compound eyes of a robber fly (Holcocephala fusca).
Credit: Par Opo Terser [CC-BY-2.0], via Wikimedia Commons

Fly eyes have the fastest visual responses in the animal kingdom, but how they achieve this has long been an enigma. A new study shows that their rapid vision may be a result of their photoreceptors -- specialised cells found in the retina -- physically contracting in response to light. The mechanical force then generates electrical responses that are sent to the brain much faster than, for example, in our own eyes, where responses are generated using traditional chemical messengers.

The study was published October 11, in the journal Science.

It had been thought that the ion channels responsible for generating the photoreceptors' electrical response were activated by chemical messengers as is usually the case in cell signalling pathways. However, these results suggest that the light-sensitive ion channels responsible for the photoreceptor's electrical response may be physically activated by the contractions -- a surprising solution to the mystery of light perception in the fly's eye and a new concept in cellular signalling.

Professor Roger Hardie, lead author of the study from the University of Cambridge's Department of Physiology, Development and Neuroscience, said: "The ion channel in question is the so-called 'transient receptor potential' (TRP) channel, which we originally identified as the light-sensitive channel in the fly in the 1990's. It is now recognised as the founding member of one of the largest ion channel families in the genome, with closely related channels playing vital roles throughout our own bodies. As such, TRP channels are increasingly regarded as potential therapeutic targets for numerous pathological conditions, including pain, hypertension, cardiac and pulmonary disease, cancer, rheumatoid arthritis, and cerebral ischaemia. We are therefore hopeful that these new results may have significance well beyond the humble eye of the fly."

A fly's vision is so fast that it is capable of tracking movements up to five times faster than our own eyes. This performance is achieved using microvillar photoreceptor cells, in which the photo-receptive membrane is made up of tiny tubular membranous protrusions known as microvilli. In each photoreceptor cell, tens of thousands of these are packed together to form a long rod-like structure, which acts as a light-guide to absorb the incident light. Each microvillus also houses the biochemical machinery, which converts the energy of the absorbed light into the electrical responses that are sent to the brain -- a process known as phototransduction.

As in all photoreceptors, phototransduction starts with absorption of light by a visual pigment molecule (rhodopsin). In microvillar photoreceptors this leads to activation of a specific enzyme known as phospholipase C (PLC). PLC is a ubiquitous and very well-studied enzyme, which cleaves a large piece from a specific lipid component of the cell membrane ("PIP2"), leaving a smaller membrane lipid (DAG) in its place.

Somehow this enzymatic reaction leads to the opening of "ion channels" in the microvillus membrane; once opened, these allow positively charged ions such as Ca2+ and Na+ to flow into the cell thus generating the electrical response. This basic sequence of events has been established for over 20 years; but exactly how PLC's enzymatic activity causes the opening of the channels has long remained a mystery and one of the major outstanding questions in sensory biology.

Professor Hardie added: "The conventional wisdom would be that one of the products of this enzyme's activity is a chemical 'second messenger' that binds to and activates the channel. However, years of research had previously failed to find compelling evidence for such a straightforward mechanism."

The new study, which was funded by the BBSRC and the Medical Research Council, using the fruitfly, Drosophila, now suggests a remarkable and unexpected resolution to this mystery. The key finding was that the photoreceptors physically contract in response to light flashes. The contractions were so small and fast that an "atomic force microscope" was needed to measure them. This revealed that the contractions were even faster than the cell's electrical response and appeared to be caused directly by PLC activity.

The researchers believe that the splitting of the membrane lipid PIP2 by the enzyme PLC reduces the membrane area, thereby increasing tension in the membrane and causing each tiny microvillus to contract in response to light. The synchronised contraction of thousands of microvilli together then accounts for the contractions measured from the whole cell.

Dr Kristian Franze, co-author of the paper from the University of Cambridge, said: "We propose that within each microvillus the increase in membrane tension acts directly on the light-sensitive channels. In other words, rather than using a traditional chemical 2nd messenger, the channels were being activated mechanically."

This concept was supported by experiments in which the native light-sensitive channels were eliminated by mutation and replaced with mechano-sensitive channels, which are known to open in response to membrane tension. Remarkably, these photoreceptors still generated electrical signals in response to light, but were now mediated by activation of the ectopic mechano-sensitive channels. To test whether the native light-sensitive channels could be affected by mechanical forces in the membrane, the microvillar membrane was stretched or compressed by changing the osmotic pressure. This simple experimental manipulation rapidly enhanced or suppressed channel openings in response to light as predicted.

These results suggest that PLC mediates its effects in the photoreceptors by changing the mechanical state of the membrane. The researchers suggest that it is the increase in the membrane tension (along with a pH change also resulting from PLC activity) that triggers the opening of the light-sensitive channels. Mechano-sensitive ion channels are actually well known, but normally involved in transducing mechanical stimuli -- such as sound in the ears or pressure on the skin. One of their characteristics is that they can be activated extremely rapidly -- perhaps an explanation for why fly photoreceptors have evolved this solution to phototransduction.

Professor Hardie said: "That a mechanical signal could be an intermediate signal -or 'second messenger'- in an otherwise purely biochemical cascade is a novel concept that extends our understanding of cellular signalling mechanisms to a new level."


Story Source:

The above story is based on materials provided by University of Cambridge. The original story is licensed under a Creative Commons license. Note: Materials may be edited for content and length.


Journal Reference:

  1. Roger C. Hardie, Kristian Franze. Photomechanical Responses in Drosophila Photoreceptors. Science, 12 October 2012; Vol. 338 no. 6104 pp. 260-263 DOI: 10.1126/science.1222376

Cite This Page:

University of Cambridge. "Surprising solution to fly eye mystery." ScienceDaily. ScienceDaily, 11 October 2012. <www.sciencedaily.com/releases/2012/10/121011141441.htm>.
University of Cambridge. (2012, October 11). Surprising solution to fly eye mystery. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2012/10/121011141441.htm
University of Cambridge. "Surprising solution to fly eye mystery." ScienceDaily. www.sciencedaily.com/releases/2012/10/121011141441.htm (accessed August 1, 2014).

Share This




More Matter & Energy News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins