Featured Research

from universities, journals, and other organizations

Applied physics as art: Spray-paint ultrathin coatings change color with only a few atoms' difference in thickness

Date:
October 14, 2012
Source:
Harvard University
Summary:
Researchers have demonstrated a new way to customize the color of metal surfaces by exploiting a completely overlooked optical phenomenon. For centuries it was thought that thin-film interference effects, such as those that cause oily pavements to reflect a rainbow of swirling colors, could not occur in opaque materials. However, even very "lossy" thin films, if atomically thin, can be tailored to reflect a particular range of dramatic and vivid colors.

Gold films colored with nanometer-thick layers of germanium.
Credit: Photo courtesy of Mikhail Kats, Romain Blanchard, and Patrice Genevet

In Harvard's Pierce Hall, the surface of a small germanium-coated gold sheet shines vividly in crimson. A centimeter to the right, where the same metallic coating is literally only about 20 atoms thicker, the surface is a dark blue, almost black. The colors form the logo of the Harvard School of Engineering and Applied Sciences (SEAS), where researchers have demonstrated a new way to customize the color of metal surfaces by exploiting a completely overlooked optical phenomenon.

For centuries it was thought that thin-film interference effects, such as those that cause oily pavements to reflect a rainbow of swirling colors, could not occur in opaque materials. Harvard physicists have now discovered that even very "lossy" thin films, if atomically thin, can be tailored to reflect a particular range of dramatic and vivid colors.

Published in the journal Nature Materials (online) on October 14, the finding opens up new possibilities for sophisticated optical devices, as well as consumer products such as jewelry and new techniques in the visual arts.

The discovery is the latest to emerge from the laboratory of Federico Capasso, Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering at SEAS, whose research group most recently produced ultrathin flat lenses and needle light beams that skim the surface of metals. The common thread in Capasso's recent work is the manipulation of light at the interface of materials that are engineered at the nano- scale, a field referred to as nanophotonics. Graduate student and lead author Mikhail A. Kats carried that theme into the realm of color.

"In my group, we frequently reexamine old phenomena, where you think everything's already known," Capasso says. "If you have perceptive eyes, as many of my students do, you can discover exciting things that have been overlooked. In this particular case there was almost a bias among engineers that if you're using interference, the waves have to bounce many times, so the material had better be transparent. What Mikhail's done -- and it's admittedly simple to calculate -- is to show that if you use a light-absorbing film like germanium, much thinner than the wavelength of light, then you can still see large interference effects."

The result is a structure made of only two elements, gold and germanium (or many other possible pairings), that shines in whatever color one chooses.

"We are all familiar with the phenomenon that you see when there's a thin film of gasoline on the road on a wet day, and you see all these different colors," explains Capasso.

Those colors appear because the crests and troughs in the light waves interfere with each other as they pass through the oil into the water below and reflect back up into the air. Some colors (wavelengths) get a boost in brightness (amplitude), while other colors are lost.

That's essentially the same effect that Capasso and Kats are exploiting, with coauthors Romain Blanchard and Patrice Genevet. The absorbing germanium coating traps certain colors of light while flipping the phase of others so that the crests and troughs of the waves line up closely and reflect one pure, vivid color.

"Instead of trying to minimize optical losses, we use them as an integral part of the design of thin-film coatings," notes Kats. "In our design, reflection and absorption cooperate to give the maximum effect."

Most astonishingly, though, a difference of only a few atoms' thickness across the coating is sufficient to produce the dramatic color shifts. The germanium film is applied through standard manufacturing techniques -- lithography and physical vapor deposition, which the researchers compare to stenciling and spray-painting -- so with only a minimal amount of material (a thickness between 5 and 20 nanometers), elaborate colored designs can easily be patterned onto any surface, large or small.

"Just by changing the thickness of that film by about 15 atoms, you can change the color," says Capasso. "It's remarkable."

The researchers have already performed the same treatment on silver, making it appear gold, as well as a range of pastel colors.

Harvard's Office of Technology Development has filed a patent application and is working with the Capasso lab to pursue the commercialization of this new technology, either through a start-up company or through licensing to existing companies. Application areas being explored include consumer products and optical devices, such as filters, displays, photovoltaics, detectors, and modulators.

This work was supported in part by the U.S. Air Force Office of Scientific Research and a National Science Foundation (NSF) Graduate Research Fellowship. Some of the work was performed at the Harvard Center for Nanoscale Systems, a member of the NSF-supported National Nanotechnology Infrastructure Network.


Story Source:

The above story is based on materials provided by Harvard University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mikhail A. Kats, Romain Blanchard, Patrice Genevet, Federico Capasso. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nature Materials, 2012; DOI: 10.1038/nmat3443

Cite This Page:

Harvard University. "Applied physics as art: Spray-paint ultrathin coatings change color with only a few atoms' difference in thickness." ScienceDaily. ScienceDaily, 14 October 2012. <www.sciencedaily.com/releases/2012/10/121014162912.htm>.
Harvard University. (2012, October 14). Applied physics as art: Spray-paint ultrathin coatings change color with only a few atoms' difference in thickness. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2012/10/121014162912.htm
Harvard University. "Applied physics as art: Spray-paint ultrathin coatings change color with only a few atoms' difference in thickness." ScienceDaily. www.sciencedaily.com/releases/2012/10/121014162912.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins