Featured Research

from universities, journals, and other organizations

Researchers elucidate transport pathway of immune system substances

Date:
October 18, 2012
Source:
Max Delbrück Center for Molecular Medicine
Summary:
To transport substances from the site of their production to their destination, the body needs a sophisticated transport and sorting system. Various receptors in and on the cells recognize certain molecules, pack them and ensure that they are transported to the right place. One of these receptors is Sortilin. It is present in the cells of the nervous system, the liver, and the immune system. Studies have now shown that the receptor Sortilin plays an important role in the function of the immune system.

To transport substances from the site of their production to their destination, the body needs a sophisticated transport and sorting system. Various receptors in and on the cells recognize certain molecules, pack them and ensure that they are transported to the right place. One of these receptors is Sortilin. It is present in the cells of the nervous system, the liver, and the immune system. Studies by Stefanie Herda and Dr. Armin Rehm (Max Delbrück Center for Molecular Medicine, MDC, Berlin-Buch and Charité-Universitätsmedizin Berlin) and the immunologist Dr. Uta Höpken (MDC) have now shown that the receptor Sortilin plays an important role in the function of the immune system.

The research is published in the journal Immunity.

In the search for diseases, the T cells of the immune system go on patrol throughout the body. If they encounter a cell infected by viruses, they bind to it and secrete substances that ensure that the target cell dies. One of these substances is granzyme A, which penetrates the infected cell and induces programmed cell death. In addition, the immune cells secrete interferon-gamma, which induces the surrounding cells to have a stronger immune response.

Interferon-gamma is produced by cytotoxic T cells (formerly: T killer cells), T helper cells and natural killer cells. It enhances the activity of immune cells and induces other cells of the body to increasingly present fragments of the pathogen on their surface so that the T cells can find the affected cells more easily. To facilitate the transport of interferon-gamma from the interior of the T cell where it is produced to the cell membrane where it can be released, the cell uses its interior processing and transport system, to which the Golgi apparatus belongs.

If one were to imagine the Golgi apparatus as a post office, Sortilin's task is to wrap the interferon-gamma cargo into these packages and navigate them to their destination. Without Sortilin, however, the packages cannot be delivered and remain in the post office, that is in the Golgi apparatus. Correspondingly, in the serum, i.e. outside of the cell, too little interferon-gamma is present. Thus, lack of interferon-gamma is not caused by diminished production, but rather by reduced or abrogated transport activity, eventually preventing the interferon-gamma from reaching its destination. This in turn leads to a weakened immune defense system since the interferon can only exert its immune-stimulating effect when it is released from the immune cells.

While the transport of interferon-gamma is disturbed in the absence of Sortilin, the transport of granzyme A, which destroys diseased cells directly, is more effective. Granzyme A uses another transport pathway, which is dependent on a multi-part receptor complex. This complex includes the molecule VAMP7. Together with its binding partners, this molecule ensures that transport packages containing granzyme A as part of its cargo reach their correct address in the cell. The work of the researchers led by Dr. Rehm suggests that Sortilin has an indirect influence on VAMP7 by promoting transport routes that lead to the degradation of VAMP7. In cells lacking Sortilin the researchers were able to detect increased VAMP7. This condition allowed for a more efficient transport and therefore an increased release of granzyme A.

Accordingly, Sortilin influences two different transport pathways for key immunological effector molecules in an opposite manner. Without Sortilin, less interferon-gamma is available, instead there is an increased level of granzyme A. But the increased concentration of granzyme A cannot compensate for the interferon gamma deficiency. In the experiment, the immune system of mice in which the researchers had deactivated Sortilin was significantly weaker and the fight against viruses and bacteria was less effective. The advantage for these animals, however, was that autoimmune diseases -- that is, diseases in which one's own immune system reacts against the body -- were much less pronounced.


Story Source:

The above story is based on materials provided by Max Delbrück Center for Molecular Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stefanie Herda, Friederike Raczkowski, Hans-Willi Mittrücker, Gerald Willimsky, Kerstin Gerlach, Anja A. Kühl, Tilman Breiderhoff, Thomas E. Willnow, Bernd Dörken, Uta E. Höpken, Armin Rehm. The Sorting Receptor Sortilin Exhibits a Dual Function in Exocytic Trafficking of Interferon-γ and Granzyme A in T Cells. Immunity, 2012; DOI: 10.1016/j.immuni.2012.07.012

Cite This Page:

Max Delbrück Center for Molecular Medicine. "Researchers elucidate transport pathway of immune system substances." ScienceDaily. ScienceDaily, 18 October 2012. <www.sciencedaily.com/releases/2012/10/121018123048.htm>.
Max Delbrück Center for Molecular Medicine. (2012, October 18). Researchers elucidate transport pathway of immune system substances. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2012/10/121018123048.htm
Max Delbrück Center for Molecular Medicine. "Researchers elucidate transport pathway of immune system substances." ScienceDaily. www.sciencedaily.com/releases/2012/10/121018123048.htm (accessed September 22, 2014).

Share This



More Health & Medicine News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Liberia Pleads for Help to Fight Ebola

Liberia Pleads for Help to Fight Ebola

AP (Sep. 22, 2014) — Liberia's finance minister is urging the international community to quickly follow through on pledges of cash to battle Ebola. Bodies are piling up in the capital Monrovia as the nation awaits more help. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Ebola Doctor Says Border Controls Critical

Ebola Doctor Says Border Controls Critical

AP (Sep. 22, 2014) — A Florida doctor who helped fight the expanding Ebola outbreak in West Africa says the disease can be stopped, but only if nations quickly step up their response and make border control a priority. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Global Ebola Aid Increasing But Critics Say It's Late

Global Ebola Aid Increasing But Critics Say It's Late

Newsy (Sep. 21, 2014) — More than 100 tons of medical supplies were sent to West Africa on Saturday, but aid workers say the global response is still sluggish. Video provided by Newsy
Powered by NewsLook.com
Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) — Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins