Featured Research

from universities, journals, and other organizations

Evolution: New understandings of how populations change over time

Date:
October 19, 2012
Source:
Veterinärmedizinische Universität Wien
Summary:
Since 1859, when Darwin’s classic work “On the Origin of Species” was published, we have known that populations change over the course of time.  The ability to adapt to changing surroundings is the basis for evolution and is crucial for animals and plants to come to terms with new environmental conditions, for example as a consequence of climate change.  Despite the obvious importance of the process, however, we still do not understand the underlying mechanisms.  It is clear that organisms change their DNA in response to selection pressures.  But how? 

Fruit flies are bred in special containers.
Credit: Vetmeduni Vienna/Kapun

Since 1859, when Darwin's classic work "On the Origin of Species" was published, we have known that populations change over the course of time. The ability to adapt to changing surroundings is the basis for evolution and is crucial for animals and plants to come to terms with new environmental conditions, for example as a consequence of climate change. Despite the obvious importance of the process, however, we still do not understand the underlying mechanisms. It is clear that organisms change their DNA in response to selection pressures. But how?

Related Articles


Important clues come from the work of Pablo Orozco-terWengel in the group of Christian Schlötterer at the University of Veterinary Medicine, Vienna. The results are published in the current issue of the journal Molecular Ecology.

In the long run, all organisms must adapt to survive as their surroundings do not remain constant for ever. The major difficulty with understanding adaption relates to the length of time required for experiments: evolution is by its very nature a gradual process. Fortunately, however, recent breakthroughs in experimental evolution using model organisms are providing important insights into the process. The nature of the underlying genetic changes has generally remained elusive but recent work at the Institute of Population Genetics of the University of Veterinary Medicine, Vienna is helping to show us how evolution may operate.

To discover what happens when an organism -- in this case the fruit fly, Drosophila melanogaster -- is confronted with new conditions for a prolonged period of time, terWengel and colleagues Martin Kapun and Viola Nolte subjected flies to an unfamiliar temperature regime, in which 12-hour days at 28oC alternated with 12-hour nights at 18oC. Throughout the experiment, the scientists monitored the changes to the flies' DNA by sequencing pools of female flies taken after certain numbers of generations. The complicated study was made possible by developments in sequencing technology that enable the rapid sequencing of entire genomes and by new and sophisticated software algorithms that permit the frequency of gene variants (alleles or polymorphisms) to be directly compared across different populations.

At the start of the experiment, the fly genomes contained sufficient polymorphisms to enable natural selection to act on the population. The researchers were able to confirm that the genetic changes over time were not random but presumably driven by a selective force: the X chromosome proved to be more stable than chromosome III, for example, despite its far smaller population size (each pair of flies carries a total of four copies of chromosome III but only a single X chromosome). They also showed that genetic changes were widespread and rapid: within a mere 15 generations, the frequencies of variants at nearly 5000 positions in the genome had altered significantly more than expected.

Surprisingly, however, not all changes took place at the same rate. The scientists found that while the frequencies of variants of some genes continued to rise throughout the entire course of the study (37 generations), the proportions of alleles of other genes rose rapidly at the start of the experiment but reached a plateau after about 15 generations. The reasons for this levelling out are still unclear but may relate to the fluctuating temperatures employed in the work, which could result in different selective advantages being conferred by several different alleles of a particular gene.

As Schlötterer puts it, "we expected the flies to respond genetically to the changes in their environment. But we did not expect the genetic adaptations to group so neatly into two classes, with so little overlap between them. It will be intriguing to try to find out whether the two categories of gene affect distinct groups of traits."


Story Source:

The above story is based on materials provided by Veterinärmedizinische Universität Wien. Note: Materials may be edited for content and length.


Journal Reference:

  1. Pablo Orozco-terWengel, Martin Kapun, Viola Nolte, Robert Kofler, Thomas Flatt, Christian Schlötterer. Adaptation ofDrosophilato a novel laboratory environment reveals temporally heterogeneous trajectories of selected alleles. Molecular Ecology, 2012; 21 (20): 4931 DOI: 10.1111/j.1365-294X.2012.05673.x

Cite This Page:

Veterinärmedizinische Universität Wien. "Evolution: New understandings of how populations change over time." ScienceDaily. ScienceDaily, 19 October 2012. <www.sciencedaily.com/releases/2012/10/121019071417.htm>.
Veterinärmedizinische Universität Wien. (2012, October 19). Evolution: New understandings of how populations change over time. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2012/10/121019071417.htm
Veterinärmedizinische Universität Wien. "Evolution: New understandings of how populations change over time." ScienceDaily. www.sciencedaily.com/releases/2012/10/121019071417.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Fossils & Ruins News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) — The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com
3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) — A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Ruins Thought To Be Port Actually Buried Greek City

Ruins Thought To Be Port Actually Buried Greek City

Newsy (Nov. 24, 2014) — Media is calling it an "underwater Pompeii." Researchers have found ruins off the coast of Delos. Video provided by Newsy
Powered by NewsLook.com
Amphipolis Tomb Architraves Reveal Faces

Amphipolis Tomb Architraves Reveal Faces

AFP (Nov. 22, 2014) — Faces in an area of mosaics is the latest find by archaeologists at a recently discovered tomb dating back to fourth century BC and the time of Alexander the Great in Greece. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins