Featured Research

from universities, journals, and other organizations

Astronomers study 2-million-light-year 'extragalactic afterburner'

Date:
October 22, 2012
Source:
International Centre for Radio Astronomy Research
Summary:
Blasting over two million lights years from the centre of a distant galaxy is a supersonic jet of material that looks strikingly similar to the afterburner flow of a fighter jet, except in this case the jet engine is a supermassive black hole and the jet material is moving at nearly the speed of light.

The jet known as ‘PKS 0637-752’ as seen by the Australia Telescope Compact Array (ATCA) in New South Wales, Australia clearly showing the shock diamond-like shapes in the two million light year long structure.
Credit: Dr Leith Godfrey, ICRAR and Dr Jim Lovell, UTas.

Blasting over two million lights years from the centre of a distant galaxy is a supersonic jet of material that looks strikingly similar to the afterburner flow of a fighter jet, except in this case the jet engine is a supermassive black hole and the jet material is moving at nearly the speed of light.

Related Articles


Research published over the weekend in the Astrophysical Journal Letters shows the galaxy-scale jet to have bright and dark regions, similar to the phenomenon in an afterburner exhaust called 'shock diamonds.'

A new image of the previously studied jet reveals regularly spaced areas that are brighter than the rest of the jet in a pattern that echoes the way the afterburner from a jet engine has brighter diamond-shaped areas in its general glow.

"One intriguing possibility is that the pattern we see in this cosmic jet is produced in the same way as the pattern in the exhaust from fighter jet engines," said Dr Leith Godfrey, from the Curtin University node of The International Centre for Radio Astronomy Research.

Dr Godfrey said the jets are produced when material falls onto a supermassive black hole at the centre of a galaxy, but many details beyond that remain unknown.

"Massive jets like this one have been studied for decades, since the beginning of radio astronomy, but we still don't understand exactly how they are produced or what they're made of," he said.

"If the brighter patches are caused by the same process in astronomical jets as they are in earthly jet engines, then the distance between them can give us important information about the power of the jet and the density of the surrounding space."

Dr Godfrey said that jets like the one he studied are the largest objects in the Universe, about 100 times larger than the Milky Way.

"If we want to understand how galaxies form and grow, we need to understand these jets. They are extremely powerful and are believed to stop stars forming in their parent galaxy, limiting how big the galaxies can grow and effecting how the Universe looks today," he said.

"This new image of the jet shows detail we've never seen before and the pattern we revealed provides a clue to how jets like this one work," said Dr Jim Lovell, a co-author from the University of Tasmania.

"This particular jet emits a lot of X-rays, which is hard to explain with our current models. Our new find is a step forward in understanding how these giant objects emit so much X-Ray radiation, and indirectly, will help us understand how the jet came to be."

Dr Lovell said that the image had been taken using the CSIRO Australia Telescope Compact Array radio telescope in New South Wales.

ICRAR is a joint venture between Curtin University and The University of Western Australia providing research excellence in the field of radio astronomy.


Story Source:

The above story is based on materials provided by International Centre for Radio Astronomy Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. L. E. H. Godfrey, J. E. J. Lovell, S. Burke-Spolaor, R. Ekers, G. V. Bicknell, M. Birkinshaw, D. M. Worrall, D. L. Jauncey, D. A. Schwartz, H. L. Marshall, J. Gelbord, E. S. Perlman, M. Georganopoulos. Periodic Structure in the Megaparsec-scale Jet of PKS 0637–752. The Astrophysical Journal, 2012; 758 (2): L27 DOI: 10.1088/2041-8205/758/2/L27

Cite This Page:

International Centre for Radio Astronomy Research. "Astronomers study 2-million-light-year 'extragalactic afterburner'." ScienceDaily. ScienceDaily, 22 October 2012. <www.sciencedaily.com/releases/2012/10/121022071405.htm>.
International Centre for Radio Astronomy Research. (2012, October 22). Astronomers study 2-million-light-year 'extragalactic afterburner'. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2012/10/121022071405.htm
International Centre for Radio Astronomy Research. "Astronomers study 2-million-light-year 'extragalactic afterburner'." ScienceDaily. www.sciencedaily.com/releases/2012/10/121022071405.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Space & Time News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA Prepares for Next Phase of Hubble Successor

NASA Prepares for Next Phase of Hubble Successor

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists and engineers prepare for the next phase of the James Webb Space Telescope, the scientific successor to the Hubble. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com
Spokesman: 'NORAD Ready to Track Santa'

Spokesman: 'NORAD Ready to Track Santa'

AP (Dec. 19, 2014) Pentagon spokesman Rear Adm. John Kirby said that NORAD is ready to track Santa Claus as he delivers gifts next week. Speaking tongue-in-cheek, he said if Santa drops anything off his sleigh, "we've got destroyers out there to pick them up." (Dec. 19) Video provided by AP
Powered by NewsLook.com
NASA's Planet-Finding Kepler Mission Isn't Over After All

NASA's Planet-Finding Kepler Mission Isn't Over After All

Newsy (Dec. 18, 2014) More than a year after NASA declared the Kepler spacecraft broken beyond repair, scientists have figured out how to continue getting useful data. Video provided by Newsy
Powered by NewsLook.com
Rover Finds More Clues About Possible Life On Mars

Rover Finds More Clues About Possible Life On Mars

Newsy (Dec. 17, 2014) NASA's Curiosity rover detected methane on Mars and organic compounds on the surface, but it doesn't quite prove there was life ... yet. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins