Featured Research

from universities, journals, and other organizations

Breakthrough technique images breast tumors in 3-D with great clarity, reduced radiation

Date:
October 22, 2012
Source:
University of California - Los Angeles
Summary:
Scientists are able to use a new technique to produce three-dimensional images of breast tissue that are two-to-three times sharper than current hospital CT scanners, and with a lower dose of X-ray radiation than from a mammogram. With higher quality images, breast tumors may be detected earlier and with much greater accuracy for the nearly one in eight women diagnosed with breast cancer in her lifetime in the United States.

Breast tumor (red) in 3-D: The red area represents a three-dimensional breast tumor.
Credit: ESRF-LMU/Emmanuel Brun

Like cleaning the lenses of a foggy pair of glasses, scientists are now able to use a technique developed by UCLA researchers and their European colleagues to produce three-dimensional images of breast tissue that are two to three times sharper than those made using current CT scanners at hospitals. The technique also uses a lower dose of X-ray radiation than a mammogram.

These higher-quality images could allow breast tumors to be detected earlier and with much greater accuracy. One in eight women in the United States will be diagnosed with breast cancer during her lifetime.

The research is published the week of Oct. 22 in the early edition of the Proceedings of the National Academy of Sciences.

The most common breast cancer screening method used today is called dual-view digital mammography, but it isn't always successful in identifying tumors, said Jianwei (John) Miao, a UCLA professor of physics and astronomy and researcher with the California NanoSystems Institute at UCLA.

"While commonly used, the limitation is that it provides only two images of the breast tissue, which can explain why 10 to 20 percent of breast tumors are not detectable on mammograms," Miao said. "A three-dimensional view of the breast can be generated by a CT scan, but this is not frequently used clinically, as it requires a larger dose of radiation than a mammogram. It is very important to keep the dose low to prevent damage to this sensitive tissue during screening."

Recognizing these limitations, the scientists went in a new direction. In collaboration with the European Synchrotron Radiation Facility in France and Germany's Ludwig Maximilians University, Miao's international colleagues used a special detection method known as phase contrast tomography to X-ray a human breast from multiple angles.

They then applied equally sloped tomography, or EST -- a breakthrough computing algorithm developed by Miao's UCLA team that enables high-quality image-reconstruction -- to 512 of these images to produce 3-D images of the breast at a higher resolution than ever before. The process required less radiation than a mammogram.

In a blind evaluation, five independent radiologists from Ludwig Maximilians University ranked these images as having a higher sharpness, contrast and overall image quality than 3-D images of breast tissue created using other standard methods.

"Even small details of the breast tumor can be seen using this technique," said Maximilian Reiser, director of the radiology department at Ludwig Maximilians University, who contributed his medical expertise to the research.

The technology commonly used today for mammograms or imaging a patient's bones measures the difference in an X-ray's intensity before and after it passes through the body. But the phase contrast X-ray tomography used in this study measures the difference in the way an X-ray oscillates through normal tissue rather than through slightly denser tissue like a tumor or bone. While a very small breast tumor might not absorb many X-rays, the way it changes the oscillation of an X-ray can be quite large, Miao said. Phase contrast tomography captures this difference in oscillation, and each image made using this technique contributes to the overall 3-D picture.

The computational algorithm EST developed by Miao's UCLA team is a primary driver of this advance. Three-dimensional reconstructions, like the ones created in this research, are produced using sophisticated software and a powerful computer to combine many images into one 3-D image, much like various slices of an orange can be combined to form the whole. By rethinking the mathematic equations of the software in use today, Miao's group developed a more powerful algorithm that requires fewer "slices" to get a clearer overall 3-D picture.

"The technology used in mammogram screenings has been around for more than 100 years," said Paola Coan, a professor of X-ray imaging at Ludwig Maximilians University. "We want to see the difference between healthy tissue and the cancer using X-rays, and that difference can be very difficult to see, particularly in the breast, using standard techniques. The idea we used here was to combine phase contrast tomography with EST, and this combination is what gave us much higher quality 3-D images than ever before."

While this new technology is like a key in a lock, the door will only swing open -- bringing high-resolution 3-D imaging from the synchrotron facility to the clinic -- with further technological advances, said Alberto Bravin, managing physicist of the biomedical research laboratory at the European Synchrotron Radiation Facility. He added that the technology is still in the research phase and will not be available to patients for some time.

"A high-quality X-ray source is an absolute requirement for this technique," Bravin said. "While we can demonstrate the power of our technology, the X-ray source must come from a small enough device for it to become commonly used for breast cancer screening. Many research groups are actively working to develop this smaller X-ray source. Once this hurdle is cleared, our research is poised to make a big impact on society."

These results represent the collaborative efforts of senior authors Miao, Bravin and Coan. Significant contributions were provided by co-first authors Yunzhe Zhao, a recent UCLA doctoral graduate in Miao's laboratory, and Emmanuel Brun, a scientist working with Bravin and Coan. Other co-authors included Zhifeng Huang of UCLA and Aniko Sztrókay, Paul Claude Diemoz, Susanne Liebhardt, Alberto Mittone and Sergei Gasilov of Ludwig Maximilians University.

The research was funded by UC Discovery/Tomosoft Technologies; the National Institute of General Medical Sciences, a division of the National Institutes of Health; and the Deutsche Forschungsgemeinschaft-Cluster of Excellence Munich-Centre for Advanced Photonics.


Story Source:

The above story is based on materials provided by University of California - Los Angeles. The original article was written by Melody Pupols. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yunzhe Zhao, Emmanuel Brun, Paola Coan, Zhifeng Huang, Aniko Sztrókay, Paul Claude Diemoz, Susanne Liebhardt, Alberto Mittone, Sergei Gasilov, Jianwei Miao, and Alberto Bravin. High-resolution, low-dose phase contrast X-ray tomography for 3D diagnosis of human breast cancers. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1204460109

Cite This Page:

University of California - Los Angeles. "Breakthrough technique images breast tumors in 3-D with great clarity, reduced radiation." ScienceDaily. ScienceDaily, 22 October 2012. <www.sciencedaily.com/releases/2012/10/121022162710.htm>.
University of California - Los Angeles. (2012, October 22). Breakthrough technique images breast tumors in 3-D with great clarity, reduced radiation. ScienceDaily. Retrieved April 25, 2014 from www.sciencedaily.com/releases/2012/10/121022162710.htm
University of California - Los Angeles. "Breakthrough technique images breast tumors in 3-D with great clarity, reduced radiation." ScienceDaily. www.sciencedaily.com/releases/2012/10/121022162710.htm (accessed April 25, 2014).

Share This



More Health & Medicine News

Friday, April 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Fungus Killing Bats, Spreading in US

Deadly Fungus Killing Bats, Spreading in US

AP (Apr. 24, 2014) — A disease that has killed more than six million cave-dwelling bats in the United States is on the move and wildlife biologists are worried. White Nose Syndrome, discovered in New York in 2006, has now spread to 25 states. (April 24) Video provided by AP
Powered by NewsLook.com
Companies Ramp Up Wellness to Lower Health Costs

Companies Ramp Up Wellness to Lower Health Costs

AP (Apr. 24, 2014) — That little voice telling you to exercise, get in shape and get healthy is probably coming from your boss. More companies are beefing up wellness programs to try and cut down their health care costs. (April 24) Video provided by AP
Powered by NewsLook.com
Blood From World's Oldest Woman Suggests Life Limit

Blood From World's Oldest Woman Suggests Life Limit

Newsy (Apr. 24, 2014) — Scientists say for the extremely elderly, their stem cells might reach a state of exhaustion. This could limit one's life span. Video provided by Newsy
Powered by NewsLook.com
FDA Wants To Ban Sales Of E-Cigarettes To Minors

FDA Wants To Ban Sales Of E-Cigarettes To Minors

Newsy (Apr. 24, 2014) — The Food and Drug Administration wants to crack down on the use of e-cigarettes, banning the sale of the product to minors. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins