Featured Research

from universities, journals, and other organizations

Solving stem cell mysteries

Date:
October 26, 2012
Source:
Carnegie Institution
Summary:
The ability of embryonic stem cells to differentiate into different types of cells with different functions is regulated and maintained by a complex series of chemical interactions, which are not well understood. Learning more about this process could prove useful for stem cell-based therapies down the road. New research zeroes in on the process by which stem cells maintain their proper undifferentiated state.

A non-catalytic subunit of the mRNA decapping complex (green), is found in both the cytoplasm and the nucleus (co-localizing with chromatin--blue) in embryonic stem cells.
Credit: Image courtesy of Carnegie Institution

The ability of embryonic stem cells to differentiate into different types of cells with different functions is regulated and maintained by a complex series of chemical interactions, which are not well understood. Learning more about this process could prove useful for stem cell-based therapies down the road. New research from a team led by Carnegie's Yixian Zheng zeroes in on the process by which stem cells maintain their proper undifferentiated state.

Their results are published in Cell October 26.

Embryonic stem cells go through a process called self-renewal, wherein they undergo multiple cycles of division while not differentiating into any other type of cells. This process is dependent on three protein networks, which guide both self-renewal and eventual differentiation. But the integration of these three networks has remained a mystery.

Using a combination of genetic, protein-oriented and physiological approaches involving mouse embryonic stem cells, the team -- which also included current and former Carnegie scientists Junling Jia, Xiaobin Zheng, Junqi Zhang, Anying Zhang, and Hao Jiang -- uncovered a mechanism that integrates all three networks involved in embryonic stem cell self-renewal and provide a critical missing link to understanding this process.

The key is a protein called Utf1. It serves three important roles. First, it balances between activating and deactivating the necessary genes to direct the cell toward differentiation. At the same time, it acts on messenger RNA that is the transcription product of the genes when they're activated by tagging it for degradation, rather than allowing it to continue to serve its cellular function. Lastly, it blocks a genetic feedback loop that normally inhibits cellular proliferation, allowing it to occur in the rapid nature characteristic of embryonic stem cells.

"We are slowly but surely growing to understand the physiology of embryonic stem cells," Zheng said. "It is crucial that we continue to carrying out basic research on how these cells function." Non-Carnegie co-authors on the paper include Gangquing Hu, Kairong Cui, Chengyu Liu and Keji Zhao of the National Institutes of Health; and John Yates III and Bingwen Lu of the Scripps Research Institute, the latter of whom is now at Pfizer.


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. Junling Jia, Xiaobin Zheng, Gangqing Hu, Kairong Cui, Junqi Zhang, Anying Zhang, Hao Jiang, Bingwen Lu, John Yates, Chengyu Liu, Keji Zhao, Yixian Zheng. Regulation of Pluripotency and Self- Renewal of ESCs through Epigenetic- Threshold Modulation and mRNA Pruning. Cell, 2012; 151 (3): 576 DOI: 10.1016/j.cell.2012.09.023

Cite This Page:

Carnegie Institution. "Solving stem cell mysteries." ScienceDaily. ScienceDaily, 26 October 2012. <www.sciencedaily.com/releases/2012/10/121026153611.htm>.
Carnegie Institution. (2012, October 26). Solving stem cell mysteries. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2012/10/121026153611.htm
Carnegie Institution. "Solving stem cell mysteries." ScienceDaily. www.sciencedaily.com/releases/2012/10/121026153611.htm (accessed September 22, 2014).

Share This



More Health & Medicine News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins