Featured Research

from universities, journals, and other organizations

Unique protein bond enables learning and memory

Date:
October 30, 2012
Source:
Georgia Health Sciences University
Summary:
Two proteins have a unique bond that enables brain receptors essential to learning and memory to not only get and stay where they're needed, but to be hauled off when they aren't, researchers say. NMDA receptors increase the activity and communication of brain cells and are strategically placed, much like a welcome center, at the receiving end of the communication highway connecting two cells. They also are targets in brain-degenerating conditions such as Alzheimer's and Parkinson's.

Two proteins have a unique bond that enables brain receptors essential to learning and memory to not only get and stay where they're needed, but to be hauled off when they aren't, researchers say.

Related Articles


NMDA receptors increase the activity and communication of brain cells and are strategically placed, much like a welcome center, at the receiving end of the communication highway connecting two cells. They also are targets in brain-degenerating conditions such as Alzheimer's and Parkinson's.

In a true cradle-to-grave relationship, researchers have found the scaffolding protein, SAP102, which helps stabilize the receptor on the cell surface, binds with a subunit of the NMDA receptor called GluN2B at two sites, said Dr. Bo-Shiun Chen, neuroscientist at the Medical College of Georgia at Georgia Health Sciences University.

While one binding site is the norm, these proteins have one that's stronger than the other. When it's time for the normal receptor turnover, the stronger bond releases and the lesser one shuttles the receptor inside the cell for degradation or recycling.

"One binding site is involved in stabilizing the receptor on the cell surface and the other is important in removing the receptor. We think it's a paradigm shift; we've never thought about the same scaffolding protein having two roles," said Chen, corresponding author of the study in the journal Cell Reports.

"We believe by understanding the normal turnover of these receptors, we can learn more about how to prevent the abnormal receptor loss that occurs in debilitating diseases such as Alzheimer's." In Parkinson's, the receptors inexplicably move away from where the synapse, or information highway, connects to the neuron, making them less effective. NMDA receptors are supposed to cluster where the synapse hooks into the receiving neuron; in fact, it's part of what anchors the synapse, Chen said.

Interestingly, this pivotal protein, SAP102, a member of the MAGUK family of scaffolding proteins, is the only family member known to directly contribute to maladies: its mutation causes intellectual disability.

While all cells have a system for managing the number of receptors on their surface, in Alzheimer's, this removal process appears accelerated, with increased engulfing of receptors and less neuron-to-neuron communication. The neurotransmitter glutamate helps establish and maintain the synapse and also binds with GluN2B.

GluN2B-containing NMDA receptors stay open to receive information for a long time, enabling the type of vigorous and sustained communication that enables learning and memory. In fact the number of these receptors naturally decreases with age, which may be one reason young people learn easier. When it's time to remove a receptor, phosphorus gets added to GluN2B, changing its function so it no longer binds to the scaffolding protein.

Chen's research was funded by the National Institute of Neurological Disorders and Stroke and conducted in mice and rat neurons in culture. Collaborators include Dr. Roger A. Nicoll, Professor, Departments of Cellular and Molecular Pharmacology and Physiology, the University of California, San Francisco, and Dr. Katherine W. Roche, Senior Investigator, National Institute of Neurological Disorders and Stroke.


Story Source:

The above story is based on materials provided by Georgia Health Sciences University. The original article was written by Toni Baker. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bo-Shiun Chen, John A. Gray, Antonio Sanz-Clemente, Zhe Wei, Eleanor V. Thomas, Roger A. Nicoll, Katherine W. Roche. SAP102 Mediates Synaptic Clearance of NMDA Receptors. Cell Reports, 2012; DOI: 10.1016/j.celrep.2012.09.024

Cite This Page:

Georgia Health Sciences University. "Unique protein bond enables learning and memory." ScienceDaily. ScienceDaily, 30 October 2012. <www.sciencedaily.com/releases/2012/10/121030161418.htm>.
Georgia Health Sciences University. (2012, October 30). Unique protein bond enables learning and memory. ScienceDaily. Retrieved March 31, 2015 from www.sciencedaily.com/releases/2012/10/121030161418.htm
Georgia Health Sciences University. "Unique protein bond enables learning and memory." ScienceDaily. www.sciencedaily.com/releases/2012/10/121030161418.htm (accessed March 31, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, March 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Solitair Device Aims to Takes Guesswork out of Sun Safety

Solitair Device Aims to Takes Guesswork out of Sun Safety

Reuters - Innovations Video Online (Mar. 31, 2015) — The Solitair device aims to take the confusion out of how much sunlight we should expose our skin to. Small enough to be worn as a tie or hair clip, it monitors the user&apos;s sun exposure by taking into account their skin pigment, location and schedule. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Dinι Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins