Featured Research

from universities, journals, and other organizations

Physicists study fast-moving electrons in graphene as a model laboratory for massless particles

Date:
October 31, 2012
Source:
Springer Science+Business Media
Summary:
A team of physicists from Europe and South Africa has shown that electrons moving randomly in graphene can mimic the dynamics of particles such as cosmic rays, despite travelling at a fraction of their speed.

A team of physicists from Europe and South Africa showed that electrons moving randomly in graphene can mimic the dynamics of particles such as cosmic rays, despite travelling at a fraction of their speed, in a paper about to be published in EPJ B.

Andrey Pototsky and colleagues made use of their knowledge of graphene, which is made of a carbon layer, one atom thick, and packed in a honeycomb lattice pattern. In such material the interaction of electrons with atoms changes the effective mass of the electrons. As a result, the energy of electrons in graphene becomes similar to the photon energy.

Therefore, electrons in graphene can be regarded as behaving like cosmic rays, which belong to a family known as ultra-relativistic particles, even though their actual velocity is one hundred times lower than the speed of light.

The authors employed the classical equations used to describe random motion -- so-called Brownian motion -- to study the dynamics of electrons within the confines of their graphene mini-laboratory. They considered different graphene chip geometries and subjected them to changing conditions that affect the way these electrons diffuse through the material, such as temperature and electric field strength.

Going one step further, the authors were able to rectify electron fluctuations and to control the electron motion itself, from an unusual chaotic type of motion to a periodic movement, by varying the electric field.

Future work would experimentally demonstrate how variation of the temperature can be used positively to enhance the performance of graphene chips by gaining a greater control over electron transport. Such graphene mini-labs could also ultimately help us to understand the dynamics of matter and anti-matter in cosmic rays.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Pototsky, F. Marchesoni, F. V. Kusmartsev, P. Hänggi, S. E. Savel’ev. Relativistic Brownian motion on a graphene chip. The European Physical Journal B, 2012; 85 (10) DOI: 10.1140/epjb/e2012-30716-7

Cite This Page:

Springer Science+Business Media. "Physicists study fast-moving electrons in graphene as a model laboratory for massless particles." ScienceDaily. ScienceDaily, 31 October 2012. <www.sciencedaily.com/releases/2012/10/121031110744.htm>.
Springer Science+Business Media. (2012, October 31). Physicists study fast-moving electrons in graphene as a model laboratory for massless particles. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2012/10/121031110744.htm
Springer Science+Business Media. "Physicists study fast-moving electrons in graphene as a model laboratory for massless particles." ScienceDaily. www.sciencedaily.com/releases/2012/10/121031110744.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) — Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) — Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) — Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) — Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins