Featured Research

from universities, journals, and other organizations

Towards medical treatments using cell level control

Date:
October 31, 2012
Source:
Tokyo Institute of Technology
Summary:
Researchers in Japan and Israel have identified a means of controlling biological processes that could help treatments for immune disease, neurological disorders and cancer.

Researchers at Tokyo Institute of Technology and the Weizmann Institute of Science identify a means of controlling biological processes that could help treatments for immune disease, neurological disorders and cancer.

The cellular response to a number of signals including inflammatory cytokines, tumor promoters, carcinogens, and chemotherapeutic agents hinge on the transcription factor NF-κB. Rivka Dikstein and colleagues at Tokyo Institute of Technology in Japan and the Weizmann Institute of Science in Israel identify how the protein DSIF controls NF-κB activity. The research may lead to methods for controlling inflammation, and immune responses, as well as the cell cycle processes that can lead to cancer.

Activity of NF-κB is usually transient because some of the gene products function as negative regulators of NF-κB, resulting in a negative feedback loop. This is desirable because persistent activation of NF-κB can lead to various pathogenic conditions such as chronic inflammation, autoimmune diseases, and cancer.

Dikstein and colleagues treated cells to reduce the expression of DSIF and monitored the effect on protein levels of NF-κB's target genes. They found that in the treated 'DSIF knockdown' cells the levels of these proteins failed to recover following a degradation process. Further investigation revealed that DSIF plays an integral role in the maturation and transport of messenger RNAs.

"The unique control of the negative feedback regulator genes by DSIF may be utilized by cells under circumstances in which prolonged NF-κB activity is needed," explain the authors. Their future studies will focus on DSIF under specific settings with a view to identifying drug targets for selective manipulation of NF-κB activity.

Background

NF-κB induces gene expression responsible for a number of biological processes including inflammation and cell survival. Its deregulation is linked to chronic inflammation and cancer but so far the mechanisms behind these processes have not been fully understood.

Nuclear transport is integral to NF-κB activity. In unstimulated cells it is retained inactive in the cytoplasm. Signals that trigger its activation result in its transport into the nucleus where it activates responsive genes, such as A20 and IκBα.

Activity of NF-κB is usually transient because products of these genes function as negative regulators of NF-κB, resulting in a negative feedback and limiting the duration of NF-κB activation. In certain diseases NF-κB activation becomes persistent, perhaps due to an interruption of this feedback loop.

NF-κB activation results in recruitment of the protein DSIF at the target genes A20 and IκBα. The researchers confirmed the role of DSIF in the negative feedback regulation of NF-κB activity by downregulating a protein subunit of DSIF and comparing the treated cells with controls. In untreated cells the levels of proteins for the target genes A20 and IκBα are high. Although the levels diminish significantly in 30 minutes following a process called TNF-α induction, which is caused by degradation of the proteins, within 2 hours the levels recover. In knockdown cells, however, the levels remained diminished 2 hours after TNF-α induction.

Further investigations using chromatin immunoprecipitation assays revealed abnormalities in the synthesis of A20 and IκBα proteins in the knock down cells. A significant portion of the A20 and IκBα mRNAs in the knockdown cells were uncapped and unspliced (Fig. 2).

The researchers also studied how export was affected in DSIF knockdown cells. Export of mature mRNAs from the nucleus to the cytoplasm is a highly regulated process incorporating quality assurance checks. The researchers prepared RNA from cytosolic and nuclear cell fractions for comparison. In knockdown cells following TNF-α induction, the nuclear fractions had much larger amounts of A20 and IκBα than the cytosolic fractions, suggesting accumulation in the nucleus.

The impact observed on the synthesis and export of A20 and IκBα in DSIF knockdown cells was striking. A20 and IκBα are also responsible for regulating other cell signalling processes and it is likely that the effects on associated signalling processes contribute to the overall impact of DSIF knockdown.

As the authors point out, diminished DSIF activity could contribute to pathological states in which NF-κB becomes constitutively active, such as inflammatory and autoimmune diseases, neurological disorders, and cancer. Further work on DSIF activity could help develop new approaches to treating these diseases.

Acknowledgments

These results were conducted as part of the JST's PRESTO project, "Epigenetic control and biological functions" (Research Supervisor: Dr. Tsunehiro Mukai, professor emeritus, Saga University).


Story Source:

The above story is based on materials provided by Tokyo Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gil Diamant, Liat Amir-Zilberstein, Yuki Yamaguchi, Hiroshi Handa, Rivka Dikstein. DSIF Restricts NF-κB Signaling by Coordinating Elongation with mRNA Processing of Negative Feedback Genes. Cell Reports, 2012; 2 (4): 722 DOI: 10.1016/j.celrep.2012.08.041

Cite This Page:

Tokyo Institute of Technology. "Towards medical treatments using cell level control." ScienceDaily. ScienceDaily, 31 October 2012. <www.sciencedaily.com/releases/2012/10/121031122633.htm>.
Tokyo Institute of Technology. (2012, October 31). Towards medical treatments using cell level control. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2012/10/121031122633.htm
Tokyo Institute of Technology. "Towards medical treatments using cell level control." ScienceDaily. www.sciencedaily.com/releases/2012/10/121031122633.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins