Featured Research

from universities, journals, and other organizations

Cellular landscaping: Predicting how, and how fast, cells will change

Date:
November 1, 2012
Source:
National Institute of Standards and Technology (NIST)
Summary:
A research team has developed a model for making quantifiable predictions of how a group of cells will react and change in response to a given environment or stimulus -- and how quickly. The model, in principle, makes it possible to assign reliable numbers to the complex evolution of a population of cells, a critical capability for efficient biomanufacturing as well as for the safety of stem cell-based therapies, among other applications.

Time lapse fluorescence images of a cell culture (clockwise from top left, start - 14 hours - 28 hours - 42 hours) reveal how the expression of a particular gene in the culture varies not only from cell to cell, but with time.
Credit: Halter/NIST

A research team at the National Institute of Standards and Technology (NIST) has developed a model for making quantifiable predictions of how a group of cells will react and change in response to a given environment or stimulus -- and how quickly. The NIST model, in principle, makes it possible to assign reliable numbers to the complex evolution of a population of cells, a critical capability for efficient biomanufacturing as well as for the safety of stem cell-based therapies, among other applications.

The behavior and fate of cells are only partially determined by their DNA. A living cell reacts to both its internal and external environment -- the concentration of a particular protein inside itself or the chemistry of its surroundings, for example -- and those reactions are inherently probabilistic. You can't predict the future of any given cell with certainty.

This inherent uncertainty has consequences, according to NIST biochemist Anne Plant. "In the stem cell area in particular, there's a real safety and effectiveness issue because it's very hard to get 100 percent terminal differentiation of stem cells in a culture," she says. This could be problematic, because a therapist wishing to produce, say, heart muscle cells for a patient, might not want to introduce the wild card of undifferentiated stem cells. "Or effectiveness may be dependent on a mixture of cells at different stages of differentiation. One of the things that is impossible to predict at the moment is: if you waited longer, would the number of differentiated versus nondifferentiated cells change? Or if you were to just separate out the differentiated cells, does that really remove all the nondifferentiated cells? Or could some of them revert back?" says Plant.

The NIST experiments did not use stem cells, but rather fibroblasts, a common model cell for experiments. The team also used a standard tracking technique, modifying a gene of interest -- in this case, one that codes for a protein involved in building the extracellular support matrix in tissues -- by adding a snippet that codes for a small fluorescent molecule. The more a given cell activates or expresses the gene, the brighter it glows under appropriate light. The team then monitored the cell culture under a microscope, taking an image every 15 minutes for over 40 hours to record the fluctuations in cell behavior, the cells waxing and waning in the degree to which they express the fluorescent gene.

Custom software developed at NIST was used to analyze each image. Both time-lapse data from individual cells and time-independent data from the entire population of cells went into a statistical model. The resulting graph of peaks and valleys, called a landscape, says Plant, "mathematically describes the range of possible cell responses and how likely it is for cells to exhibit these responses." In addition, she says, the time analysis provides kinetic information: how much will a cell likely fluctuate between states, and how quickly?

The combination makes it possible to predict the time it will take for a given percentage of cells to change their characteristics. For biomanufacturing, it means a finer control over cell-based processes. If applied to stem cells, the technique could be useful in predicting how quickly the cells differentiate and the probability of having undifferentiated cells present at any point in time.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. D. R. Sisan, M. Halter, J. B. Hubbard, A. L. Plant. Predicting rates of cell state change caused by stochastic fluctuations using a data-driven landscape model. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1207544109

Cite This Page:

National Institute of Standards and Technology (NIST). "Cellular landscaping: Predicting how, and how fast, cells will change." ScienceDaily. ScienceDaily, 1 November 2012. <www.sciencedaily.com/releases/2012/11/121101100237.htm>.
National Institute of Standards and Technology (NIST). (2012, November 1). Cellular landscaping: Predicting how, and how fast, cells will change. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2012/11/121101100237.htm
National Institute of Standards and Technology (NIST). "Cellular landscaping: Predicting how, and how fast, cells will change." ScienceDaily. www.sciencedaily.com/releases/2012/11/121101100237.htm (accessed April 24, 2014).

Share This



More Health & Medicine News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Fungus Killing Bats, Spreading in US

Deadly Fungus Killing Bats, Spreading in US

AP (Apr. 24, 2014) A disease that has killed more than six million cave-dwelling bats in the United States is on the move and wildlife biologists are worried. White Nose Syndrome, discovered in New York in 2006, has now spread to 25 states. (April 24) Video provided by AP
Powered by NewsLook.com
Companies Ramp Up Wellness to Lower Health Costs

Companies Ramp Up Wellness to Lower Health Costs

AP (Apr. 24, 2014) That little voice telling you to exercise, get in shape and get healthy is probably coming from your boss. More companies are beefing up wellness programs to try and cut down their health care costs. (April 24) Video provided by AP
Powered by NewsLook.com
FDA Wants To Ban Sales Of E-Cigarettes To Minors

FDA Wants To Ban Sales Of E-Cigarettes To Minors

Newsy (Apr. 24, 2014) The Food and Drug Administration wants to crack down on the use of e-cigarettes, banning the sale of the product to minors. Video provided by Newsy
Powered by NewsLook.com
Michigan Man Sees Thanks to 'bionic Eye'

Michigan Man Sees Thanks to 'bionic Eye'

AP (Apr. 23, 2014) A legally blind Michigan man is 'seeing something new every day' thanks to a high-tech retinal implant procedure. He's one of the first in the country to receive a 'bionic eye' since the federal government approved the surgery. (April 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins