Featured Research

from universities, journals, and other organizations

Cellular landscaping: Predicting how, and how fast, cells will change

Date:
November 1, 2012
Source:
National Institute of Standards and Technology (NIST)
Summary:
A research team has developed a model for making quantifiable predictions of how a group of cells will react and change in response to a given environment or stimulus -- and how quickly. The model, in principle, makes it possible to assign reliable numbers to the complex evolution of a population of cells, a critical capability for efficient biomanufacturing as well as for the safety of stem cell-based therapies, among other applications.

Time lapse fluorescence images of a cell culture (clockwise from top left, start - 14 hours - 28 hours - 42 hours) reveal how the expression of a particular gene in the culture varies not only from cell to cell, but with time.
Credit: Halter/NIST

A research team at the National Institute of Standards and Technology (NIST) has developed a model for making quantifiable predictions of how a group of cells will react and change in response to a given environment or stimulus -- and how quickly. The NIST model, in principle, makes it possible to assign reliable numbers to the complex evolution of a population of cells, a critical capability for efficient biomanufacturing as well as for the safety of stem cell-based therapies, among other applications.

The behavior and fate of cells are only partially determined by their DNA. A living cell reacts to both its internal and external environment -- the concentration of a particular protein inside itself or the chemistry of its surroundings, for example -- and those reactions are inherently probabilistic. You can't predict the future of any given cell with certainty.

This inherent uncertainty has consequences, according to NIST biochemist Anne Plant. "In the stem cell area in particular, there's a real safety and effectiveness issue because it's very hard to get 100 percent terminal differentiation of stem cells in a culture," she says. This could be problematic, because a therapist wishing to produce, say, heart muscle cells for a patient, might not want to introduce the wild card of undifferentiated stem cells. "Or effectiveness may be dependent on a mixture of cells at different stages of differentiation. One of the things that is impossible to predict at the moment is: if you waited longer, would the number of differentiated versus nondifferentiated cells change? Or if you were to just separate out the differentiated cells, does that really remove all the nondifferentiated cells? Or could some of them revert back?" says Plant.

The NIST experiments did not use stem cells, but rather fibroblasts, a common model cell for experiments. The team also used a standard tracking technique, modifying a gene of interest -- in this case, one that codes for a protein involved in building the extracellular support matrix in tissues -- by adding a snippet that codes for a small fluorescent molecule. The more a given cell activates or expresses the gene, the brighter it glows under appropriate light. The team then monitored the cell culture under a microscope, taking an image every 15 minutes for over 40 hours to record the fluctuations in cell behavior, the cells waxing and waning in the degree to which they express the fluorescent gene.

Custom software developed at NIST was used to analyze each image. Both time-lapse data from individual cells and time-independent data from the entire population of cells went into a statistical model. The resulting graph of peaks and valleys, called a landscape, says Plant, "mathematically describes the range of possible cell responses and how likely it is for cells to exhibit these responses." In addition, she says, the time analysis provides kinetic information: how much will a cell likely fluctuate between states, and how quickly?

The combination makes it possible to predict the time it will take for a given percentage of cells to change their characteristics. For biomanufacturing, it means a finer control over cell-based processes. If applied to stem cells, the technique could be useful in predicting how quickly the cells differentiate and the probability of having undifferentiated cells present at any point in time.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. D. R. Sisan, M. Halter, J. B. Hubbard, A. L. Plant. Predicting rates of cell state change caused by stochastic fluctuations using a data-driven landscape model. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1207544109

Cite This Page:

National Institute of Standards and Technology (NIST). "Cellular landscaping: Predicting how, and how fast, cells will change." ScienceDaily. ScienceDaily, 1 November 2012. <www.sciencedaily.com/releases/2012/11/121101100237.htm>.
National Institute of Standards and Technology (NIST). (2012, November 1). Cellular landscaping: Predicting how, and how fast, cells will change. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2012/11/121101100237.htm
National Institute of Standards and Technology (NIST). "Cellular landscaping: Predicting how, and how fast, cells will change." ScienceDaily. www.sciencedaily.com/releases/2012/11/121101100237.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins