Featured Research

from universities, journals, and other organizations

Researchers target breast cancer in three trials

Date:
November 1, 2012
Source:
George Mason University
Summary:
Researchers are attacking breast cancer in three separate trials, including one that uses a malarial drug that shows promise as a way to stop breast cancer before it starts.

A malarial drug is showing promise in stopping breast cancer before it starts, Mason researchers are discovering during a clinical trial.

"The bold long-term goal is a short-term oral treatment that prevents breast cancer by killing the precursor cells that initiate breast cancer," says Lance Liotta, co-director of Mason's Center for Applied Proteomics and Molecular Medicine (CAPMM). "And it's looking hopeful."

The PINC trial (Preventing Invasive Neoplasia with Chloroquine) targets ductal carcinoma in situ, or DCIS, the most common type of pre-invasive breast cancer. Chloroquine is a drug given to prevent or treat malaria; it's showing promise in the early phase of the PINC trial.

CAPMM has three ongoing breast cancer research projects, including the PINC trial, which span the full scope of breast cancer's impact on patients.

In the PINC trial, DCIS is the focus. DCIS shows up as white spots in the MRI of a breast. Those white spots are calcifications that may mark the milk ducts where DCIS cells are growing, says Virginia Espina, assistant research professor at CAPMM. Not all DCIS becomes cancer, but all breast cancer goes through the DCIS stage, she says.

If the patient is diagnosed with DCIS after a biopsy, then she can enter the trial, says Espina, adding that the study doesn't interfere with standard medical treatment. Mason researchers are working with Kirsten Edmiston, a breast surgeon at Inova Fairfax Hospital who recruits the patients and clinically directs the trial.

Chloroquine for Every Woman?

While patients are waiting between their diagnosis and the surgery, they take chloroquine once a week for four weeks, Espina says.

A significant reduction in the lesion's size is the sought-after outcome, says Espina, who can be seen in this video describing individual differences in cancer. The widely prescribed malaria drug chloroquine has few side effects -- a rare rash is one, Espina says. There could come a day when chloroquine is taken by women worldwide to prevent breast cancer.

"We can imagine that in the future every woman will take chloroquine once a year," Espina says. "Chloroquine kills off the pre-malignant cells that are starting to accumulate. You'd do this periodically as a new type of chemo prevention."

Chloroquine works by stopping autophagy, which is used by cells to survive under stress. "When your cells realize they don't have enough nutrients, they eat themselves," Espina says. "It's a way to make energy when you don't have enough food."

And that's the spot the DCIS cells are in as they pile up in the milk duct. They're not getting enough oxygen and food and are squashed together.

"It's like being in an elevator," Espina says. "You're next to people but not necessarily next to people you know or like. It's the same way for these tumor cells or pre-malignant cells. They're next to a cell, but they're not anchored anywhere, and cells like to be anchored and have a home.

"For all these reasons, they're under stress. When a cell is under stress, it's a life-and-death struggle. They're not just going to die. They're going to do what they can to survive. That's when they use autophagy to stay alive."

Chemotherapy, a common treatment for cancer, can rev up autophagy, Espina says. "A doctor selects a treatment to try to kill the cell, but the cell is trying to survive; it's trying to do what it's programmed to do. We have to find a way to defeat this cellular process."

Chloroquine works like Pepto-Bismol; it alters the cell's digestive process and therefore autophagy. "But the chloroquine doesn't kill the normal cells because the normal cells aren't dependent on autophagy to survive," Espina says.

Individualized Treatment for Metastatic Breast Cancer

The second CAPMM study on breast cancer is funded by the Side-Out Foundation. Researchers are developing individualized treatment for women with metastatic breast cancer. These advanced tumors have spread to other organs, such as the liver, brain and bone, and have limited response to conventional therapies. Standard chemotherapy failed the 25 women Mason has worked with to pinpoint more effective treatments, says Mariaelena Pierobon, CAPMM assistant research professor.

Pierobon is using technology created by Liotta and Emanuel "Chip" Petricoin III to identify which drug targets are activated within each patient tumor. Pierobon's team is building on the promise of personalized medicine by focusing on the molecular profile of the metastatic lesions.

"We hope that by providing physicians with detailed information on the mechanisms that are driving our patients' tumors, we can facilitate the selection of the most appropriate treatment," Pierobon says. "We are trying to guide that decision by using the cutting-edge molecular technologies that were created in our laboratory to select among the FDA-approved drugs that might be the most promising for each patient."

In this approach, patients don't have to wait for new drugs to be developed. "By using drugs that are already approved, you don't have to study toxicity. That's a huge advantage," Pierobon says.

The third study is the I-SPY 2 TRIAL in which CAPMM researcher Julia Wulfkuhle is leading molecular profiling efforts developed uniquely in the Mason laboratory for women with stage II/III breast cancer. The FDA singled out I-SPY 2 as a leading trial design for accelerated drug approval.

The Side-Out Foundation raised $370,000 through volleyball tournaments to fund the metastatic breast cancer trial. The Side-Out Foundation is sponsoring the ongoing CAPMM research studies on the I-SPY 2 TRIAL through the FNIH Foundation for the National Institutes of Health. The Department of Defense Breast Cancer Research Project is funding the majority of the $2.1 million, three-year PINC grant, which started two years ago.


Story Source:

The above story is based on materials provided by George Mason University. The original article was written by Michele McDonald. Note: Materials may be edited for content and length.


Cite This Page:

George Mason University. "Researchers target breast cancer in three trials." ScienceDaily. ScienceDaily, 1 November 2012. <www.sciencedaily.com/releases/2012/11/121101141224.htm>.
George Mason University. (2012, November 1). Researchers target breast cancer in three trials. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2012/11/121101141224.htm
George Mason University. "Researchers target breast cancer in three trials." ScienceDaily. www.sciencedaily.com/releases/2012/11/121101141224.htm (accessed August 28, 2014).

Share This




More Health & Medicine News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Treadmill 'trips' May Reduce Falls for Elderly

Treadmill 'trips' May Reduce Falls for Elderly

AP (Aug. 28, 2014) Scientists are tripping the elderly on purpose in a Chicago lab in an effort to better prevent seniors from falling and injuring themselves in real life. (Aug.28) Video provided by AP
Powered by NewsLook.com
Mini Pacemaker Has No Wires

Mini Pacemaker Has No Wires

Ivanhoe (Aug. 27, 2014) Cardiac experts are testing a new experimental device designed to eliminate major surgery and still keep the heart on track. Video provided by Ivanhoe
Powered by NewsLook.com
After Cancer: Rebuilding Breasts With Fat

After Cancer: Rebuilding Breasts With Fat

Ivanhoe (Aug. 27, 2014) More than 269 million women are diagnosed with breast cancer each year. Many of them will need surgery and radiation, but there’s a new simple way to reconstruct tissue using a patient’s own fat. Video provided by Ivanhoe
Powered by NewsLook.com
Blood Clots in Kids

Blood Clots in Kids

Ivanhoe (Aug. 27, 2014) Every year, up to 200,000 Americans die from a blood clot that travels to their lungs. You’ve heard about clots in adults, but new research shows kids can get them too. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins