Featured Research

from universities, journals, and other organizations

Human disease modeled in an organ-on-a-chip; 'Lung-on-a-chip' sets stage for next wave of research to replace animal testing

Date:
November 7, 2012
Source:
Wyss Institute for Biologically Inspired Engineering at Harvard
Summary:
Researchers have mimicked pulmonary edema in a microchip lined by living human cells. They used this "lung-on-a-chip" to study drug toxicity and identify potential new therapies to prevent this life-threatening condition. The study offers further proof-of-concept that human "organs-on-chips" hold tremendous potential to replace traditional approaches to drug discovery and development.

Combining microfabrication techniques with modern tissue engineering, lung-on-a-chip offers an in vitro approach to drug screening by mimicking the complicated mechanical and biochemical behaviors of a human lung.
Credit: Image courtesy of Wyss Institute for Biologically Inspired Engineering at Harvard

Researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University have mimicked pulmonary edema in a microchip lined by living human cells, as reported November 7 in the journal Science Translation Medicine. They used this "lung-on-a-chip" to study drug toxicity and identify potential new therapies to prevent this life-threatening condition.

Related Articles


The study offers further proof-of-concept that human "organs-on-chips" hold tremendous potential to replace traditional approaches to drug discovery and development.

"Major pharmaceutical companies spend a lot of time and a huge amount of money on cell cultures and animal testing to develop new drugs," says Donald Ingber, M.D., Ph.D., founding director of the Wyss Institute and senior author of the study, "but these methods often fail to predict the effects of these agents when they reach humans."

The lung-on-a-chip device, which the team first described only two years ago, is a crystal clear, flexible polymer about the size of a memory stick that contains hollow channels fabricated using computer microchip manufacturing techniques. Two of the channels are separated by a thin, flexible, porous membrane that on one side is lined with human lung cells from the air sac and exposed to air; human capillary blood cells are placed on the other side with medium flowing over their surface. A vacuum applied to side channels deforms this tissue-tissue interface to re-create the way human lung tissues physically expand and retract when breathing.

Wyss Technology Development Fellow Dongeun Huh, Ph.D., who also holds appointments at Boston Children's Hospital and Harvard Medical School, studied a cancer chemotherapy drug called interleukin-2 -- or IL-2 for short -- in the lung-on-a-chip. A major toxic side effect of IL-2 is pulmonary edema, which is a deadly condition in which the lungs fill with fluid and blood clots.

When IL-2 was injected into the blood channel of the lung-on-a-chip, fluid leaked across the membrane and two tissue layers, reducing the volume of air in the other channel and compromising oxygen transport -- just as it does in lungs of human patients when it is administered at the equivalent doses and over the same time course. Blood plasma proteins also crossed into the air channel, leading to the formation of blood clots in the air space, as they do in humans treated with IL-2.

But one result came as a surprise.

It turns out the physical act of breathing greatly enhances the effects of IL-2 in pulmonary edema -- "something that clinicians and scientists never suspected before," Ingber says. When the team turned on the vacuum attached to the chip to simulate breathing, it increased fluid leakage more than three-fold when treated with the clinically relevant IL-2 dose, and the Wyss team confirmed that the same response occurs in an animal model of pulmonary edema. This result could suggest that doctors treating patients on a respirator with IL-2 should reduce the tidal volume of air being pushed into the lungs, for example, in order to minimize the negative side effects of this drug.

Most exciting for the future of drug testing was the Wyss team's finding that "this on-chip model of human pulmonary edema can be used to identify new potential therapeutic agents in vitro," Ingber says. The pulmonary edema symptoms in the lung-on-a-chip disease model could be prevented by treating the tissues with a new class of drug, a transient receptor potential vanilloid 4 (TRPV4) channel blocker, under development by GlaxoSmithKline (GSK). In a separate study published by the GSK team in the same issue of Science Translation Medicine, the beneficial effects of TRPV4 inhibition in reducing pulmonary edema were independently validated using animal models of pulmonary edema caused by heart failure.

"In just a little more than two years, we've gone from unveiling the initial design of the lung-on-a-chip to demonstrating its potential to model a complex human disease, which we believe provides a glimpse of what drug discovery and development might look like in the future," Ingber says.

The cross-disciplinary, multi-institutional team that was led by Ingber and Huh also included Wyss Postdoctoral Fellow Daniel Leslie, Ph.D.; Benjamin Matthews, M.D., assistant professor of pediatrics in the Vascular Biology Program at Boston Children's Hospital and Harvard Medical School; Wyss Institute Researcher Jacob Fraser; Samuel Jurek, a researcher at Boston Children's Hospital and Harvard Medical School; Senior Wyss Staff Scientist Geraldine Hamilton, Ph.D.; and Senior Scientific Investigator Kevin Thorneloe, Ph.D., and Investigator M. Allen McAlexander from GlaxoSmithKline. Ingber is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and Boston Children's Hospital, and Professor of Bioengineering at Harvard School of Engineering and Applied Sciences.

"Organs-on-a-chip represents a new approach to model the structure, biology, and function of human organs, as evidenced by the complex breathing action of this engineered lung. This breathing action was key to providing new insight into the etiology of pulmonary edema," said Dr. James M. Anderson, M.D., Ph.D., director of the NIH Division of Program Coordination, Planning, and Strategic Initiatives that provided partial support for this research through the Common Fund's Regulatory Science program. "These results provide support for the broader use of such microsystems in studying disease pathology and hopefully for identifying new therapeutic targets."

The work was funded by the National Institutes of Health (NIH) and the Food and Drug Administration (FDA), Defense Advanced Research Projects Agency (DARPA), and the Wyss Institute for Biologically Inspired Engineering at Harvard University.


Story Source:

The above story is based on materials provided by Wyss Institute for Biologically Inspired Engineering at Harvard. Note: Materials may be edited for content and length.


Journal Reference:

  1. Dongeun Huh, Daniel C. Leslie, Benjamin D. Matthews, Jacob P. Fraser, Samuel Jurek, Geraldine A. Hamilton, Kevin S. Thorneloe, Michael Allen McAlexander, and Donald E. Ingber. A Human Disease Model of Drug Toxicity–Induced Pulmonary Edema in a Lung-on-a-Chip Microdevice. Science Translation Medicine, 7 November 2012 DOI: 10.1126/scitranslmed.3004249

Cite This Page:

Wyss Institute for Biologically Inspired Engineering at Harvard. "Human disease modeled in an organ-on-a-chip; 'Lung-on-a-chip' sets stage for next wave of research to replace animal testing." ScienceDaily. ScienceDaily, 7 November 2012. <www.sciencedaily.com/releases/2012/11/121107141044.htm>.
Wyss Institute for Biologically Inspired Engineering at Harvard. (2012, November 7). Human disease modeled in an organ-on-a-chip; 'Lung-on-a-chip' sets stage for next wave of research to replace animal testing. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2012/11/121107141044.htm
Wyss Institute for Biologically Inspired Engineering at Harvard. "Human disease modeled in an organ-on-a-chip; 'Lung-on-a-chip' sets stage for next wave of research to replace animal testing." ScienceDaily. www.sciencedaily.com/releases/2012/11/121107141044.htm (accessed October 23, 2014).

Share This



More Health & Medicine News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com
Ebola Fears Keep Guinea Hospitals Empty

Ebola Fears Keep Guinea Hospitals Empty

AP (Oct. 23, 2014) Fears of Ebola are keeping doctors and patients alike away from hospitals in the West African nation of Guinea. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Despite Rising Death Toll, Many Survive Ebola

Despite Rising Death Toll, Many Survive Ebola

AP (Oct. 23, 2014) The family of a Dallas nurse infected with Ebola in the US says doctors can no longer detect the virus in her. Despite the mounting death toll in West Africa, there are survivors there too. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Working Mother (Oct. 22, 2014) Is your child ready? Video provided by Working Mother
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins