Featured Research

from universities, journals, and other organizations

Sweet new approach discovered to help produce metal casting parts, reduce toxicity

Date:
November 8, 2012
Source:
Oregon State University
Summary:
Based on a new discovery, the world's multi-billion dollar foundry industry may soon develop a sweet tooth. Scientists have identified a new, non-toxic binder to use in the molds this industry depends upon. It's called sugar.

Based on a new discovery by researchers at Oregon State University, the world's multi-billion dollar foundry industry may soon develop a sweet tooth.

This industry, that produces metal castings used in everything from water pumps and jet engines to railroad and automobile parts, dates back thousands of years to before Greek and Roman times. It was important in the advance of human civilization, but still continues to evolve.

Some modern technologies use various types of "binders" to essentially glue together sands and other materials to form sophisticated molds, into which molten metals are injected to create products with complex shapes. Existing approaches work, but some materials used today, such as furan resins and phenol formaldehyde resins, can emit toxic fumes during the process.

However, experts in adhesion science in the OSU College of Forestry have discovered and applied for a patent on a new use of a compound that appears to also work surprisingly well for this purpose. They say it should cost less than existing binders, is completely renewable and should be environmentally benign.

It's called sugar.

"We were surprised that simple sugar could bind sand together so strongly," said Kaichang Li, an OSU professor of wood science and engineering. "Sugar and other carbohydrates are abundant, inexpensive, food-grade materials.

"The binder systems we've developed should be much less expensive than existing sand binders and not have toxicity concerns," Li added.

Sugar is a highly water-soluble food ingredient, as anyone knows who has ever put a teaspoon of it in a cup of coffee. The OSU researchers discovered a novel way to make strong and moisture-resistant sand molds with sugar. An inaccurate reading of temperature in a baking oven helped lead to the important discovery, they said.

Li and an OSU faculty research assistant, Jian Huang, identified combinations of sugar, soy flour and hydrolyzed starch -- or even just sugar by itself -- that should work effectively as a binder in sand molds for making various types of metal parts.

This novel sand binder technology is ready for more applied research and testing, they said, and the university is seeking investors and industrial partners to commercialize it. Private sector financing of OSU research has increased 42 percent in the past two years, to $35 million, as part of its increasing emphasis on university/industry partnerships.

Sand-based moldings, which comprise about 70 percent of all metal castings, are used to make many metal products, often from aluminum or cast iron, but also from bronze, copper, tin and steel. They are a major part of the automobile industry, along with applications in plumbing materials, mining, railroad applications and many other areas.

Sugar and the other agricultural products used for this purpose should have no environmental drawbacks, since they largely decompose into just carbon dioxide and water. With the techniques developed at OSU, the use of sugar as a binder allows the creation of sand molds that gain strength rapidly and remain strong in high humidity environments, which is necessary for their effective use in industrial applications.

Li's laboratory at OSU has developed other related products in recent years, such as a natural resin made from soy flour that is already being used commercially to replace the use of formaldehyde-based adhesives in the manufacture of some wood products.

For that achievement, five years ago he was given the Presidential Green Chemistry Challenge Award by the Environmental Protection Agency, which recognizes innovators who have helped reduce waste or toxins in manufacturing processes.


Story Source:

The above story is based on materials provided by Oregon State University. Note: Materials may be edited for content and length.


Cite This Page:

Oregon State University. "Sweet new approach discovered to help produce metal casting parts, reduce toxicity." ScienceDaily. ScienceDaily, 8 November 2012. <www.sciencedaily.com/releases/2012/11/121108142805.htm>.
Oregon State University. (2012, November 8). Sweet new approach discovered to help produce metal casting parts, reduce toxicity. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2012/11/121108142805.htm
Oregon State University. "Sweet new approach discovered to help produce metal casting parts, reduce toxicity." ScienceDaily. www.sciencedaily.com/releases/2012/11/121108142805.htm (accessed April 19, 2014).

Share This



More Matter & Energy News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins