Featured Research

from universities, journals, and other organizations

Scientists 'clone' carbon nanotubes to unlock their potential for use in electronics

Date:
November 14, 2012
Source:
University of Southern California
Summary:
Scientists have developed a method of "cloning" carbon nanotubes for use as semiconductors in electronics.

Chongwu Zhou holds up a piece of plastic substrate used to build nanoscale transistors and circuits.
Credit: Image courtesy of University of Southern California

The heart of the computer industry is known as "Silicon Valley" for a reason. Integrated circuit computer chips have been made from silicon since computing's infancy in the 1960s. Now, thanks to a team of USC researchers, carbon nanotubes may emerge as a contender to silicon's throne.

Scientists and industry experts have long speculated that carbon nanotube transistors would one day replace their silicon predecessors. In 1998, Delft University built the world's first carbon nanotube transistors. Carbon nanotubes have the potential to be far smaller faster, and consume less power than silicon transistors.

A key reason carbon nanotubes are not in computers right now is that they are difficult to manufacture in a predictable way. Scientists have had a difficult time controlling the manufacture of nanotubes to the correct diameter, type and ultimately chirality -- factors that control nanotubes' electrical and mechanical properties.

Think of chirality like this: If you took a sheet of notebook paper and rolled it straight up into a tube, it would have a certain chirality. If you rolled that same sheet up at an angle, it would have a different chirality. In this example, the notebook paper represents a sheet of latticed carbon atoms that are rolled up to create a nanotube.

A team led by Professor Chongwu Zhou of the USC Viterbi School of Engineering and Ming Zheng of the National Institute of Standards and Technology in Maryland solved the problem by inventing a system that consistently produces carbon nanotubes of a predictable diameter and chirality.

Zhou worked with group members Jia Liu, Chuan Wang, Bilu Liu, Liang Chen, as well as Zheng and Xiaomin Tu of the National Institute of Standards and Technology.

"Controlling the chirality of carbon nanotubes has been a dream for many researchers. Now the dream has come true," Zhou said. The team has already patented its innovation, and its research was published Nov. 13 in Nature Communications.

Carbon nanotubes are typically grown using a chemical vapor deposition (CVD) system in which a chemical-laced gas is pumped into a chamber containing substrates with metal catalyst nanoparticles, upon which the nanotubes grow. It is generally believed that the diameters of the nanotubes are determined by the size of the catalytic metal nanoparticles. However, attempts to control the catalysts in hopes of achieving chirality-controlled nanotube growth have not been successful.

The USC team's innovation was to jettison the catalyst and instead plant pieces of carbon nanotubes that have been separated and pre-selected based on chirality, using a nanotube-separation technique developed and perfected by Zheng and his co-workers. Using those pieces as seeds, the team used CVD to extend the seeds to get much longer nanotubes, which were shown to have the same chirality as the seeds.

The process is referred to as "nanotube cloning." The next steps in the research will be to carefully study the mechanism of the nanotube growth in this system, to scale up the cloning process to get large quantities of chirality-controlled nanotubes and to use those nanotubes for electronic applications.


Story Source:

The above story is based on materials provided by University of Southern California. The original article was written by Robert Perkins. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jia Liu, Chuan Wang, Xiaomin Tu, Bilu Liu, Liang Chen, Ming Zheng, Chongwu Zhou. Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy. Nat. Commun., 13 Nov, 2012 DOI: 10.1038/ncomms2205

Cite This Page:

University of Southern California. "Scientists 'clone' carbon nanotubes to unlock their potential for use in electronics." ScienceDaily. ScienceDaily, 14 November 2012. <www.sciencedaily.com/releases/2012/11/121114134702.htm>.
University of Southern California. (2012, November 14). Scientists 'clone' carbon nanotubes to unlock their potential for use in electronics. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2012/11/121114134702.htm
University of Southern California. "Scientists 'clone' carbon nanotubes to unlock their potential for use in electronics." ScienceDaily. www.sciencedaily.com/releases/2012/11/121114134702.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Newsy (Apr. 19, 2014) Nike fired most of its Digital Sport hardware team, the group behind Nike's FuelBand device. Could Apple or an overcrowded market be behind layoffs? Video provided by Newsy
Powered by NewsLook.com
Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins