Featured Research

from universities, journals, and other organizations

Discovery of molecular pathway of Alzheimer's disease reveals new drug targets

Date:
November 20, 2012
Source:
Wellcome Trust
Summary:
The discovery of the molecular pathway that drives the changes seen in the brains of Alzheimer's patients is reported today, revealing new targets for drug discovery that could be exploited to combat the disease. The study gives the most detailed understanding yet of the complex processes leading to Alzheimer's.

The discovery of the molecular pathway that drives the changes seen in the brains of Alzheimer's patients is reported November 20, revealing new targets for drug discovery that could be exploited to combat the disease. The study gives the most detailed understanding yet of the complex processes leading to Alzheimer's.

Alzheimer's disease is associated with plaques made up of deposits of a molecule called amyloid between brain cells, which leads to the formation of tangles of twisted fibres made from a molecule called tau, found inside the brain cells. This causes the death of brain cells which is thought to bring about the symptoms of memory loss and dementia. Although it has been accepted for over twenty years that the progression of disease is driven by amyloid and results in abnormal changes in tau, the exact mechanisms of disease remain somewhat of a mystery.

Recent genome wide association studies have identified the gene for a molecule called clusterin as a susceptibility factor for late-onset Alzheimer's disease. Levels of clusterin are also known to be elevated in blood in patients with Alzheimer's from an early stage in the disease so the researchers wanted to find out what role it might play in the progression of disease.

The team, led by researchers at King's College London's Institute of Psychiatry, looked first in mouse brain cells grown in the laboratory and found that the presence of amyloid alters the amount of clusterin in these cells. Clusterin then acts to switch on a signalling pathway that drives the changes in tau that are associated with the formation of tangles inside the cells, another hallmark of the disease. When this signalling pathway was chronically switched on in a mouse model of the disease, the researchers observed an increase in tangle formation and evidence of cognitive defects.

The study, published November 20 in the journal Molecular Psychiatry, also looked in humans and detected the signature of clusterin activation in the brains of Alzheimer's patients but not in the brains of patients with other forms of dementia.

Dr Richard Killick from King's College London's Institute of Psychiatry said: "This is the first time we've been able to connect the molecular mechanisms behind the formation of amyloid plaques in the brain with the formation of tangles inside the brain cells, two of the defining features of Alzheimer's disease. Our research has given the most detailed picture yet of how the disease progresses and we hope it will offer leads for the development of new treatments."

The signalling pathway that is turned on by clusterin is called DKK1-WNT. It involves interactions between a number of different molecules that could prove to be useful targets for the development of new drugs.

Current treatments for Alzheimer's are focused on alleviating the symptoms and there is no therapy that can prevent the progression of disease.

Professor Simon Lovestone, also from King's College London's Institute of Psychiatry, who led the study, said: "We have shown that we can block the toxic effects of amyloid when we stop this signalling pathway in brain cells grown in the lab. We believe that if we could block its activity in the brains of Alzheimer's patients too, we may have an opportunity to halt the disease in man. Indeed, we have already begun our own drug development programme to do just that and are at the stage where potential compounds are coming back to us for further testing."

The DKK1-WNT pathways has also been implicated in some human cancers and although there is no evidence for a direct link, the findings from this study mean that there could be an opportunity to make advances in Alzheimer's research by capitalising on knowledge that is being gained from cancer research, the authors suggest.

Dr John Williams, Head of Neuroscience and Mental Health at the Wellcome Trust, which helped fund this study, said: "We will see more and more people affected by Alzheimer's disease as our population ages. This study gives us a much-needed additional insight to the complex biology that contributes to the development of Alzheimer's, which is vital if we are to develop new treatments that are so urgently needed."


Story Source:

The above story is based on materials provided by Wellcome Trust. Note: Materials may be edited for content and length.


Journal Reference:

  1. R Killick, E M Ribe, R Al-Shawi, B Malik, C Hooper, C Fernandes, R Dobson, P M Nolan, A Lourdusamy, S Furney, K Lin, G Breen, R Wroe, A W M To, K Leroy, M Causevic, A Usardi, M Robinson, W Noble, R Williamson, K Lunnon, S Kellie, C H Reynolds, C Bazenet, A Hodges, J-P Brion, J Stephenson, J Paul Simons, Simon Lovestone. Clusterin regulates β-amyloid toxicity via Dickkopf-1-driven induction of the wnt–PCP–JNK pathway. Molecular Psychiatry, 2012; DOI: 10.1038/mp.2012.163

Cite This Page:

Wellcome Trust. "Discovery of molecular pathway of Alzheimer's disease reveals new drug targets." ScienceDaily. ScienceDaily, 20 November 2012. <www.sciencedaily.com/releases/2012/11/121120100430.htm>.
Wellcome Trust. (2012, November 20). Discovery of molecular pathway of Alzheimer's disease reveals new drug targets. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2012/11/121120100430.htm
Wellcome Trust. "Discovery of molecular pathway of Alzheimer's disease reveals new drug targets." ScienceDaily. www.sciencedaily.com/releases/2012/11/121120100430.htm (accessed July 28, 2014).

Share This




More Mind & Brain News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) — A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com
University Quiz Implies Atheists Are Smarter Than Christians

University Quiz Implies Atheists Are Smarter Than Christians

Newsy (July 25, 2014) — An online quiz from a required course at Ohio State is making waves for suggesting atheists are inherently smarter than Christians. Video provided by Newsy
Powered by NewsLook.com
Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

AFP (July 24, 2014) — A so-called drugs rehab 'clinic' is closed down in Pakistan after police find scores of ‘patients’ chained up alleging serial abuse. Duration 03:05 Video provided by AFP
Powered by NewsLook.com
New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) — The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins