Featured Research

from universities, journals, and other organizations

Surprise origin for coronary arteries could speed advances in regenerative medicine

Date:
November 21, 2012
Source:
Albert Einstein College of Medicine of Yeshiva University
Summary:
During embryonic development, the all-important coronary arteries arise from cells previously considered incapable of producing them, according to scientists. The research may speed development of regenerative therapies for heart disease.

During embryonic development, the all-important coronary arteries arise from cells previously considered incapable of producing them, according to scientists at Albert Einstein College of Medicine of Yeshiva University. The research, carried out in mice and published November 23 in the online edition of the journal Cell, may speed development of regenerative therapies for heart disease.

Each year, more than one million Americans undergo coronary revascularization which includes coronary artery bypass graft (CABG). During CABG, doctors remove a portion of a healthy vein, usually from a patient's leg, then bypass diseased areas of the coronary arteries. While the procedure has become routine and is considered relatively safe and long-lasting, the veins used during bypass do not completely mimic the arteries they bypass. They can sometimes re-clog, a process known as restenosis, requiring further procedures. Therefore, the ability to regenerate coronary arteries could usher in a new wave of more effective cardiac care.

Coronary arteries nourish heart muscle with the nutrients and oxygen it needs for pumping. Heart attacks occur when coronary arteries become blocked, causing heart muscle to die. Recent studies had suggested that during development, the coronary arteries originate from cells of the sinus venosus (a heart cavity that exists only in embryos) or from the epicardium (the heart's outermost layer).

In their study, Einstein scientists used a wide variety of research tools to show that the coronary arteries largely arise from cells of the endocardium, the heart's innermost cell layer. In particular, the arteries arise from endocardial cells lining the ventricles (the two large chambers of the heart).

"The prevailing wisdom was that endocardial cells are terminally differentiated, meaning they cannot become any other cell type," said study leader Bin Zhou, M.D., Ph.D., associate professor of genetics, of pediatrics, and of medicine at Einstein. "But our study shows that one population of endocardial cells is actually responsible for forming the coronary arteries."

More specifically, ventricular endocardial cells develop into coronary artery progenitor (precursor) cells, which then go on to form the coronary arteries. Dr. Zhou and his colleagues also identified a key signaling pathway involved in transforming the ventricular endocardial cells into coronary artery progenitor cells. Einstein has filed a patent application related to this research. The Nfatc1 cell technology is available for licensing.

The Einstein researchers are now trying to identify all the signaling mechanisms that guide the development of the coronary arteries, with the aim of one day synthesizing healthy coronary arteries to replace diseased ones. "When provided with the right environmental signals, vascular progenitor cells can form functional vessels in a petri dish," said Dr. Zhou. "If we can figure out the critical signals regulating coronary artery differentiation and formation, then perhaps we could coax ventricular endocardial cells to build new coronary arteries that can replace damaged ones -- basically duplicating the way that these vessels are formed in the body," said Dr. Zhou.


Story Source:

The above story is based on materials provided by Albert Einstein College of Medicine of Yeshiva University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bingruo Wu, Zheng Zhang, Wendy Lui, Xiangjian Chen, Yidong Wang, Alyssa A. Chamberlain, RicardoA. Moreno-Rodriguez, RogerR. Markwald, BrianP. O’Rourke, DavidJ. Sharp, Deyou Zheng, Jack Lenz, H.Scott Baldwin, Ching-Pin Chang, Bin Zhou. Endocardial Cells Form the Coronary Arteries by Angiogenesis through Myocardial-Endocardial VEGF Signaling. Cell, 2012; 151 (5): 1083 DOI: 10.1016/j.cell.2012.10.023

Cite This Page:

Albert Einstein College of Medicine of Yeshiva University. "Surprise origin for coronary arteries could speed advances in regenerative medicine." ScienceDaily. ScienceDaily, 21 November 2012. <www.sciencedaily.com/releases/2012/11/121121130631.htm>.
Albert Einstein College of Medicine of Yeshiva University. (2012, November 21). Surprise origin for coronary arteries could speed advances in regenerative medicine. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2012/11/121121130631.htm
Albert Einstein College of Medicine of Yeshiva University. "Surprise origin for coronary arteries could speed advances in regenerative medicine." ScienceDaily. www.sciencedaily.com/releases/2012/11/121121130631.htm (accessed October 2, 2014).

Share This



More Health & Medicine News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pregnancy Spacing Could Have Big Impact On Autism Risks

Pregnancy Spacing Could Have Big Impact On Autism Risks

Newsy (Oct. 1, 2014) A new study says children born less than one year and more than five years after a sibling can have an increased risk for autism. Video provided by Newsy
Powered by NewsLook.com
Ebola Patient Told Hospital He Was from Liberia

Ebola Patient Told Hospital He Was from Liberia

AP (Oct. 1, 2014) The first Ebola patient diagnosed in the U.S. initially went to a Dallas emergency room last week but was sent home, despite telling a nurse that he had been in disease-ravaged West Africa, the hospital acknowledged Wednesday. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com
Insertable Cardiac Monitor

Insertable Cardiac Monitor

Ivanhoe (Oct. 1, 2014) A heart monitor the size of a paperclip that can save your life. The “Reveal Linq” allows a doctor to monitor patients with A-Fib on a continuous basis for up to 3 years! Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins