Featured Research

from universities, journals, and other organizations

Measles vaccine given with a microneedle patch could boost immunization programs

Date:
November 27, 2012
Source:
Georgia Institute of Technology Research News
Summary:
Measles vaccine given with painless and easy-to-administer microneedle patches can immunize against measles at least as well as vaccine given with conventional hypodermic needles, according to new research.

A size comparison of a set of hypodermic needles of the kind now used to administer the measles vaccine, and an array of stainless steel microneedles that could be the basis for a patch that would be used to administer the vaccine.
Credit: Georgia Tech Photo: Gary Meek

Measles vaccine given with painless and easy-to-administer microneedle patches can immunize against measles at least as well as vaccine given with conventional hypodermic needles, according to research done by the Georgia Institute of Technology and the Centers for Disease Control and Prevention (CDC).

Related Articles


In the study, the researchers developed a technique to dry and stabilize the measles vaccine -- which depends on a live attenuated virus -- and showed that it remained effective for at least 30 days after being placed onto the microneedles. They also demonstrated that the dried vaccine was quickly released in the skin and able to prompt a potent immune response in an animal model.

The microneedle technique could provide a new tool for international immunization programs against measles, which killed nearly 140,000 children in 2010. The research was reported online October 5 in the journal Vaccine, and will appear in a special issue of the journal. The research was supported by the Georgia Research Alliance -- and indirectly by the Division of Viral Diseases and Animal Resources Branch of the CDC, and by the National Institutes of Health through its support of efforts to develop a microneedle-based influenza vaccine.

"We showed in this study that measles vaccine delivered using a microneedle patch produced an immune response that is indistinguishable from the response produced when the vaccine is delivered subcutaneously," said Chris Edens, the study's first author and a graduate student in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

Measles immunization programs now use conventional hypodermic needles to deliver the vaccine. Large global immunization programs therefore require significant logistical support because the vaccine must be kept refrigerated, large numbers of needles and syringes must be shipped, and the ten-dose vaccine vials must be reconstituted with sterile water before use.

Because it requires a hypodermic needle injection, measles immunization programs must be carried out by trained medical personnel. Finally, used needles and syringes must be properly disposed of to prevent potential disease transmission or reuse.

Use of microneedle patches could eliminate the need to transport needles, syringes and sterile water, reducing logistical demands. Vaccination could be done by personnel with less medical training, who would simply apply the patches to the skin and remove them after several minutes, making possible door-to-door campaigns similar to those used in polio vaccination. Single-use patches could also reduce the waste of vaccine that occurs when all ten doses in a vial cannot be used.

"A major advantage would be the ease of delivery," said Mark Prausnitz, a professor in the Georgia Tech School of Chemical and Biomolecular Engineering, and one of the inventors of the microneedle patch. "Microneedles would allow us to move away from central locations staffed by health care personnel to the use of minimally-trained personnel who would go out to homes to administer the vaccine."

Many countries in the Western Hemisphere have eliminated endemic transmission of the disease, though travelers often serve as sources for imported cases. However, measles remains the leading cause of vaccine-preventable death among children elsewhere in the world, prompting interest in alternative vaccination techniques.

"Measles is extremely infectious, and we need an immunization coverage rate of around 95 percent to interrupt its transmission," said Dr. Paul Rota, Measles Laboratory Team Lead of CDC's Division of Viral Diseases and one of the study's co-authors. "Microneedles represent a real potential game-changer in developing strategies to get high global coverage for a measles vaccine."

In their study, the CDC-Georgia Tech team first faced the challenge of converting a liquid vaccine to a formulation that could be readily applied to stainless steel microneedles and dried for packaging. The work was made more difficult by the fact that the vaccine contains an attenuated live virus whose integrity had to be maintained.

The researchers began by studying materials that could be combined with the vaccine to improve its stability in dry form. Ultimately, they obtained the best results by adding a sugar known as trehalose to the liquid vaccine. That formulation was applied to the microneedles -- which were about 750 microns long -- by dipping them into the solution and allowing the liquid to dry. The vaccine dose on the microneedles was controlled by the number of times the microneedles were dipped into the solution.

Cotton rats (Sigmodon hispidus) used in the study were divided into seven groups of five animals each for the testing. The comparison showed that vaccination with the microneedle technique produced an immune response that was statistically indistinguishable from that produced by vaccination with the hypodermic needles.

"The two major accomplishments of this study are that the vaccine can be stabilized on microneedles, and that it could dissolve in the skin to provide a good immune response," Rota said.

To advance the microneedle technique, the researchers are now working to improve the stability of the dry vaccine with the goal of eliminating the need for refrigeration. They are also studying the use of polymer-based microneedles that would fully dissolve in the skin, removing the need to dispose of potentially infectious waste.

Ultimately, a microneedle-based measles vaccine will need to be evaluated for safety and efficacy in a non-human primate model and in several clinical trials before it can be used routinely in humans.

Microneedles are also being studied for administration of vaccines against influenza, polio, rotavirus, tuberculosis, and hepatitis B. The microneedle measles vaccine would likely find its first use in the developing world as part of measles elimination campaigns, and would probably not replace the Measles-Mumps-Rubella (MMR) vaccine used in the United States.

"This represents a different direction for us, which is campaign-mode global health vaccination," said Prausnitz. "I see the greatest impact of the measles patch being in developing-country vaccination programs where the logistical advantages of this simple-to-use technology will have the most public health benefit."

In addition to those already mentioned, the research team included Marcus L. Collins and Jessica Ayers, both from the CDC.

This research is supported by the Georgia Research Alliance (GRA) with indirect support from the Division of Viral Diseases and Animal Resources Branch of the Centers for Disease Control and Prevention (CDC) and the National Institutes of Health (NIH).

Mark Prausnitz is an inventor on patents and has a significant financial interest in a company that is developing microneedle-based products. This potential conflict of interest has been disclosed and is being managed by Georgia Tech and Emory University.


Story Source:

The above story is based on materials provided by Georgia Institute of Technology Research News. Note: Materials may be edited for content and length.


Journal Reference:

  1. Chris Edens, Marcus L. Collins, Jessica Ayers, Paul A. Rota, Mark R. Prausnitz. Measles vaccination using a microneedle patch. Vaccine, 2012; DOI: 10.1016/j.vaccine.2012.09.062

Cite This Page:

Georgia Institute of Technology Research News. "Measles vaccine given with a microneedle patch could boost immunization programs." ScienceDaily. ScienceDaily, 27 November 2012. <www.sciencedaily.com/releases/2012/11/121127130252.htm>.
Georgia Institute of Technology Research News. (2012, November 27). Measles vaccine given with a microneedle patch could boost immunization programs. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2012/11/121127130252.htm
Georgia Institute of Technology Research News. "Measles vaccine given with a microneedle patch could boost immunization programs." ScienceDaily. www.sciencedaily.com/releases/2012/11/121127130252.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins