Featured Research

from universities, journals, and other organizations

Superconductors that work by themselves: Scientists discover new possibilities in cryoelectronics

Date:
December 5, 2012
Source:
Universitaet Tübingen
Summary:
Scientists have experimentally demonstrated a new type of superconducting element -- named the phi-Josephson junction. Implemented in cryogenic devices, this element will make superconducting electronic circuits work practically "by themselves" and improve functionality.

Scientists from the University of Tübingen, working with colleagues from Tel Aviv University and the University of Kiel have proposed and experimentally demonstrated a new type of superconducting element -- named the phi-Josephson (φ-Josephson) junction. Implemented in cryogenic devices, this element will make superconducting electronic circuits work practically "by themselves" and improve functionality.

A Josephson junction is a quantum mechanical device consisting of two superconductors separated by a very thin (~2nm) barrier. In spite of the barrier, and thanks to quantum mechanics, the superconducting electrons in one superconductor "feel" their neighbors in the other superconductor and "synchronize" with them, i.e. behave coherently. This quantum mechanical coherence on a macroscopic scale allows using Josephson junctions as very precise sensors of magnetic fields e.g. for medical imaging or as basic elements for a scalable quantum computer.

In conventional Josephson junction this "synchronization" of the electron motion takes place in-phase i.e., without a phase shift. Recently it became possible to make Josephson junctions where the electrons in two superconductors are "synchronized" anti-phase, i.e., with a phase shift of π. Then one obtains what's known as the π Josephson junction. By combining the properties of conventional and π junctions the scientists from Tübingen, Tel Aviv and Kiel have proposed and demonstrated a Josephson junction with an arbitrary phase shift φ between electrons in two superconductors. The value of φ (0<φ<π) can be chosen by design. This φ Josephson junction can be used as a device which keeps a constant phase shift between two superconducting electrodes.

"One can think about the φ-junction as a battery, which provides a given phase shift φ (instead of a voltage like in the usual battery) for an attached superconducting electronic circuit. This phase battery, unlike the usual battery, never discharges as it causes the flow of superconducting dissipationless currents," says Prof. Roman Mints (Tel Aviv University), co-author of the idea.

"We have understood how to combine 0 and π junctions and how to prove experimentally that we have obtained a φ junction during my visit to Tel Aviv in 2011," says Dr. Edward Goldobin -- the leading scientist in this project. "Further, we discovered that this φ Josephson junction may actually be in two states -- it may "synchronize" the superconductors with the phase shift being either +φ or -φ and, thus, one can use it as a bistable system or, in the future, as a quantum bit. In our experiments[2], conducted at 300mK (-273 °C), we demonstrated the existence of these two states: we can determine experimentally in which state the junction is, and we can compel the junction to switch to the desired state +φ or to -φ." The value of the phase shift φ can be controlled by the sample parameters such as film thickness. Prior to this work, scientists thought the ground states could not be modified at will.

"The superconductor-ferromagnet-insulator-superconductor technology used to make a φ junction (composite 0-π junction) results from more than a decade of research, and to date exists in no other lab in the world. However, other groups are catching up," says Dr. Martin Weides, who created the nano-engineered thin-film samples. "The key element of our samples is film morphology control down to the atomic scale."

The groups involved in the collaboration are very optimistic about their results and are going to investigate this φ Josephson junction in greater detail, in particular in the quantum domain, within the Collaborative Research Center SFB/TRR-21.


Story Source:

The above story is based on materials provided by Universitaet Tübingen. Note: Materials may be edited for content and length.


Journal References:

  1. H. Sickinger, A. Lipman, M. Weides, R. Mints, H. Kohlstedt, D. Koelle, R. Kleiner, E. Goldobin. Experimental Evidence of a φ Josephson Junction. Physical Review Letters, 2012; 109 (10) DOI: 10.1103/PhysRevLett.109.107002
  2. E. Goldobin, D. Koelle, R. Kleiner, R. Mints. Josephson Junction with a Magnetic-Field Tunable Ground State. Physical Review Letters, 2011; 107 (22) DOI: 10.1103/PhysRevLett.107.227001

Cite This Page:

Universitaet Tübingen. "Superconductors that work by themselves: Scientists discover new possibilities in cryoelectronics." ScienceDaily. ScienceDaily, 5 December 2012. <www.sciencedaily.com/releases/2012/12/121205083826.htm>.
Universitaet Tübingen. (2012, December 5). Superconductors that work by themselves: Scientists discover new possibilities in cryoelectronics. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2012/12/121205083826.htm
Universitaet Tübingen. "Superconductors that work by themselves: Scientists discover new possibilities in cryoelectronics." ScienceDaily. www.sciencedaily.com/releases/2012/12/121205083826.htm (accessed April 24, 2014).

Share This



More Matter & Energy News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Next Stop America for France's TGV?

Next Stop America for France's TGV?

Reuters - Business Video Online (Apr. 24, 2014) — General Electric keeps quiet on reports it's in talks to buy French turbine and train maker Alstom. Ivor Bennett reports on what could be an embarrassing rumour for the French government, with business-friendly reforms proving a hard sell. Video provided by Reuters
Powered by NewsLook.com
Raw: Obama Plays Soccer With Japanese Robot

Raw: Obama Plays Soccer With Japanese Robot

AP (Apr. 24, 2014) — President Obama briefly played soccer with a robot during his visit to Japan on Thursday. The President has been emphasizing technology along with security concerns during his visit. (April 24) Video provided by AP
Powered by NewsLook.com
Obama Encourages Japanese Student-Scientists

Obama Encourages Japanese Student-Scientists

AP (Apr. 24, 2014) — President Obama spoke with student innovators in Japan and urged them to take part in increased opportunities for student exchanges with the US. (April 24) Video provided by AP
Powered by NewsLook.com
UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) — The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins