Featured Research

from universities, journals, and other organizations

Battling brittle bones with … broccoli and spinach?

Date:
December 11, 2012
Source:
Rensselaer Polytechnic Institute (RPI)
Summary:
A new study from engineering researchers shows, for the first time, how the little-understood protein osteocalcin plays a significant role in the strength of our bones. The findings could lead to new strategies and therapeutics for fighting osteoporosis and lowering the risk of bone fracture.

Engineering researchers at Rensselaer Polytechnic Institute pinpoint the origin of bone fractures.
Credit: Image courtesy of Rensselaer Polytechnic Institute (RPI)

A new study from engineering researchers at Rensselaer Polytechnic Institute shows, for the first time, how the little-understood protein osteocalcin plays a significant role in the strength of our bones. The findings could lead to new strategies and therapeutics for fighting osteoporosis and lowering the risk of bone fracture.

Funded by the U.S. National Institutes of Health, the study details how fractures in healthy bones begin with the creation of incredibly tiny holes, each measuring only about 500 atoms in diameter, within the bone's mineral structure. In the case of a slip, trip, or fall, the force of the impact on a bone physically deforms a pair of joined proteins, osteopontin and osteocalcin, and results in the formation of nanoscale holes. These holes, called dilatational bands, function as a natural defense mechanism, and help to prevent further damage to the surrounding bone. However, if the force of the impact is too great -- or if the bone is lacking osteopontin, osteocalcin, or both -- the bone will crack and fracture.

The multi-university study, led by Deepak Vashishth, head of the Department of Biomedical Engineering at Rensselaer, is the first to give evidence of fracture at the level of bone's nanostructure. Partnering with Rensselaer on the study were Villanova University, the Hospital for Special Surgery in New York, and Yale University.

"This study is important because it implicates, for the first time, the role of osteocalcin in giving bone the ability to resist fracture," Vashishth said. "Since osteocalcin is always the point of fracture, we believe that strengthening it could lead to a strengthening of the overall bone."

Long known but little understood, the protein osteocalin has been produced by and present in animal bones since before the dawn of humanity. Recently, abnormalities in ostoecalcin production have been associated with Type 2 diabetes as well as problems in reproductive health. Vashishth's new study, however, is the first to explain the structural and mechanical importance of osteocalcin in bone.

Now that osteocalcin is known to participate in bone fracture, new strategies for strengthening the bond between osteocalin and osteopontin can be investigated, Vashishth said. Augmenting the body's natural supply of osteocalcin, for example, could be one possible strategy for treating osteoporosis and other conditions leading to increased fracture risk, he said. Osteocalin must be in its carboxylated form to get absorbed into bone, and the protein is carboxylated by vitamin K. Vashishth said future studies could investigate the relation between vitamin K intake, osteocalcin, and bone strength.

"Currently, all of the advice for treating osteoporosis is related to calcium. We believe there's more to the story than just calcium, and the results of this new study raise an important question about vitamin K. Leafy green vegetables are the best source of vitamin K -- wouldn't it be great if eating spinach and broccoli was not only healthy, but also good for your bones? We plan to investigate this link in future," Vashisth said.

Results of the new study, titled "Dilatational band formation in bone," were recently published online by Proceedings of the National Academy of Sciences, and will appear in an upcoming print edition of the journal.


Story Source:

The above story is based on materials provided by Rensselaer Polytechnic Institute (RPI). Note: Materials may be edited for content and length.


Journal Reference:

  1. A. A. Poundarik, T. Diab, G. E. Sroga, A. Ural, A. L. Boskey, C. M. Gundberg, D. Vashishth. Dilatational band formation in bone. Proceedings of the National Academy of Sciences, 2012; 109 (47): 19178 DOI: 10.1073/pnas.1201513109

Cite This Page:

Rensselaer Polytechnic Institute (RPI). "Battling brittle bones with … broccoli and spinach?." ScienceDaily. ScienceDaily, 11 December 2012. <www.sciencedaily.com/releases/2012/12/121211130210.htm>.
Rensselaer Polytechnic Institute (RPI). (2012, December 11). Battling brittle bones with … broccoli and spinach?. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2012/12/121211130210.htm
Rensselaer Polytechnic Institute (RPI). "Battling brittle bones with … broccoli and spinach?." ScienceDaily. www.sciencedaily.com/releases/2012/12/121211130210.htm (accessed April 23, 2014).

Share This



More Health & Medicine News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
Study Says Most Crime Not Linked To Mental Illness

Study Says Most Crime Not Linked To Mental Illness

Newsy (Apr. 22, 2014) A new study finds most crimes committed by people with mental illness are not caused by symptoms of their illness or disorder. Video provided by Newsy
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins