Featured Research

from universities, journals, and other organizations

Alzheimer's biomarkers inhibited in animal model by targeting astrocytes

Date:
December 11, 2012
Source:
University of Kentucky
Summary:
Researchers have published an article which provides direct evidence that activated astrocytes could play a harmful role in Alzheimer's disease.

A research team composed of University of Kentucky researchers has published a paper which provides the first direct evidence that activated astrocytes could play a harmful role in Alzheimer's disease. The UK Sanders-Brown Center on Aging has also received significant new National Institutes of Health (NIH) funding to further this line of study.

Related Articles


Chris Norris, an associate professor in the UK College of Medicine Department of Molecular and Biomedical Pharmacology, as well as a member of the faculty at the UK Sanders-Brown Center on Aging, is the senior author on a paper published recently in the Journal of Neuroscience. The first author on the article, Jennifer L. Furman, was a graduate student in the Norris laboratory during completion of the study.

The astrocyte is a very abundant non-neuronal cell type that performs absolutely critical functions for maintaining healthy nervous tissue. However, in neurodegenerative diseases, like Alzheimer's disease, many astrocytes exhibit clear physical changes often referred to as "astrocyte activation." The appearance of activated astrocytes at very early stages of Alzheimer's has led to the idea that astrocytes contribute to the emergence and/or maintenance of other pathological markers of the disease, including synaptic dysfunction, neuroinflammation and accumulation of amyloid plaques.

Using an animal model, researchers directly modulated the activation state of hippocampal astrocytes using a form of gene therapy.

Mice received the gene therapy at a very young age, before the development of extensive amyloid plaque pathology, and were assessed 10 months later on a variety of Alzheimer's biomarkers.

The research team found that inhibition of astrocyte activation blunted the activation of microglia (a cell that mediates neuroinflammation), reduced toxic amyloid levels, improved synaptic function and plasticity, and preserved cognitive function.

Norris and collaborators suggest that similar astrocyte-based approaches could be developed to treat humans suffering from Alzheimer's disease, or possibly other neurodegenerative diseases. This study provides proof of principle that therapeutically targeting astrocytes can be beneficial.

Norris has been named the principal investigator on a new NIH award totaling $1,498,423 over a period of 5 years, to continue this line of research on Alzheimer's disease.


Story Source:

The above story is based on materials provided by University of Kentucky. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. L. Furman, D. M. Sama, J. C. Gant, T. L. Beckett, M. P. Murphy, A. D. Bachstetter, L. J. Van Eldik, C. M. Norris. Targeting Astrocytes Ameliorates Neurologic Changes in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2012; 32 (46): 16129 DOI: 10.1523/JNEUROSCI.2323-12.2012

Cite This Page:

University of Kentucky. "Alzheimer's biomarkers inhibited in animal model by targeting astrocytes." ScienceDaily. ScienceDaily, 11 December 2012. <www.sciencedaily.com/releases/2012/12/121211145242.htm>.
University of Kentucky. (2012, December 11). Alzheimer's biomarkers inhibited in animal model by targeting astrocytes. ScienceDaily. Retrieved March 6, 2015 from www.sciencedaily.com/releases/2012/12/121211145242.htm
University of Kentucky. "Alzheimer's biomarkers inhibited in animal model by targeting astrocytes." ScienceDaily. www.sciencedaily.com/releases/2012/12/121211145242.htm (accessed March 6, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Friday, March 6, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Former NFL Players Donate Brains to Science

Former NFL Players Donate Brains to Science

Reuters - US Online Video (Mar. 3, 2015) Super Bowl champions Sidney Rice and Steve Weatherford donate their brains, post-mortem, to scientific research into repetitive brain trauma. Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Alzheimer's Protein Plaque Found In 20-Year-Olds

Alzheimer's Protein Plaque Found In 20-Year-Olds

Newsy (Mar. 3, 2015) Researchers found an abnormal protein associated with Alzheimer&apos;s disease in the brains of 20-year-olds. Video provided by Newsy
Powered by NewsLook.com
This Nasal Treatment Could Help Ease Migraine Pain

This Nasal Treatment Could Help Ease Migraine Pain

Newsy (Mar. 2, 2015) Researchers gave lidocaine to 112 patients, and about 88 percent of the subjects said they needed less migraine-relief medicine the next day. Video provided by Newsy
Powered by NewsLook.com
How Facebook Use Can Lead To Depression

How Facebook Use Can Lead To Depression

Newsy (Mar. 1, 2015) Margaret Duffy of the University of Missouri talks about her study on the social network and the envy and depression that Facebook use can cause. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins