Featured Research

from universities, journals, and other organizations

Building better structural materials

Date:
December 13, 2012
Source:
Carnegie Institution
Summary:
When materials are stressed, they eventually change shape. Initially these changes are elastic, and reverse when the stress is relieved. When the material's strength is exceeded, the changes become permanent. This could result in the material breaking or shattering, but it could also re-shape the material, such as a hammer denting a piece of metal. Understanding this last group of changes is the focus of new research.

Azimuthally (0~360o) unrolled diffraction image (top) and the inverse pole figures along the compression direction (bottom) of 3 nm nickel at 38 gigapascals. The long thick arrows represent the maximum compression direction and the short thin arrows the minimum compression direction. The curvatures within the diffraction lines indicate that the sample is stressed. Texture is evident as the systematic intensity variations of the diffraction peaks along the azimuth direction. Texture strength is expressed as multiples of random distribution (m.r.d.), where m.r.d. = 1 denotes random distribution and a higher m.r.d. number represents stronger texture.
Credit: Image is provided courtesy of Bin Chen

When materials are stressed, they eventually change shape. Initially these changes are elastic, and reverse when the stress is relieved. When the material's strength is exceeded, the changes become permanent. This could result in the material breaking or shattering, but it could also re-shape the material, such as a hammer denting a piece of metal. Understanding this last group of changes is the focus of research from a team including Carnegie's Ho-kwang "Dave" Mao.

Their breakthrough research on the behavior nickel nanocrystals under intense pressure is published December 14 by Science. Their findings could help physicists and engineers create stronger, longer-lasting materials. It can also help earth scientists understand tectonic events and seismicity.

It is believed that permanent changes to metallic grains when under pressure are associated with the movement of structural irregularities in the grains, called dislocations. But the deformation of nanocrystalline materials has been controversial because it was thought that below a certain grain size, the structural irregularities would not form and the deformation would be dictated by motions of the boundary between grains instead. According to computer analysis, this critical limit would occur in nanocrystals at sizes between 10 and 30 nm in size.

Experimental work on nanocrystals under pressure has been limited by technical hurdles. But new capabilities using a technique called radial diamond anvil cell x-ray diffraction has opened the door to moving beyond computer modeling and into the lab.

The team, led by Bin Chen of the Lawrence Berkeley National Laboratory, was able to show that the activities of the structural irregularities that accompany deformation were occurring even in nickel nanocrystals of 3 nanometers in size when they were compressed to higher than 183,000 times normal atmospheric pressure (18.5 gigapascals). This demonstrates that so-called dislocation-associated deformation is a function of both pressure and particle size, as previously thought, but that the particle size can be smaller than computer modeling had anticipated.

"These findings help constrain the fundamental physics of deformation under pressure on a very small scale," Mao said. "They also demonstrate the importance of the radial diamond anvil cell x-ray diffraction tool for helping us understand these processes."


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. Chen, K. Lutker, S. V. Raju, J. Yan, W. Kanitpanyacharoen, J. Lei, S. Yang, H.-R. Wenk, H.-k. Mao, Q. Williams. Texture of Nanocrystalline Nickel: Probing the Lower Size Limit of Dislocation Activity. Science, 2012; 338 (6113): 1448 DOI: 10.1126/science.1228211

Cite This Page:

Carnegie Institution. "Building better structural materials." ScienceDaily. ScienceDaily, 13 December 2012. <www.sciencedaily.com/releases/2012/12/121213142303.htm>.
Carnegie Institution. (2012, December 13). Building better structural materials. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2012/12/121213142303.htm
Carnegie Institution. "Building better structural materials." ScienceDaily. www.sciencedaily.com/releases/2012/12/121213142303.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins