Featured Research

from universities, journals, and other organizations

Building better structural materials

Date:
December 13, 2012
Source:
Carnegie Institution
Summary:
When materials are stressed, they eventually change shape. Initially these changes are elastic, and reverse when the stress is relieved. When the material's strength is exceeded, the changes become permanent. This could result in the material breaking or shattering, but it could also re-shape the material, such as a hammer denting a piece of metal. Understanding this last group of changes is the focus of new research.

Azimuthally (0~360o) unrolled diffraction image (top) and the inverse pole figures along the compression direction (bottom) of 3 nm nickel at 38 gigapascals. The long thick arrows represent the maximum compression direction and the short thin arrows the minimum compression direction. The curvatures within the diffraction lines indicate that the sample is stressed. Texture is evident as the systematic intensity variations of the diffraction peaks along the azimuth direction. Texture strength is expressed as multiples of random distribution (m.r.d.), where m.r.d. = 1 denotes random distribution and a higher m.r.d. number represents stronger texture.
Credit: Image is provided courtesy of Bin Chen

When materials are stressed, they eventually change shape. Initially these changes are elastic, and reverse when the stress is relieved. When the material's strength is exceeded, the changes become permanent. This could result in the material breaking or shattering, but it could also re-shape the material, such as a hammer denting a piece of metal. Understanding this last group of changes is the focus of research from a team including Carnegie's Ho-kwang "Dave" Mao.

Related Articles


Their breakthrough research on the behavior nickel nanocrystals under intense pressure is published December 14 by Science. Their findings could help physicists and engineers create stronger, longer-lasting materials. It can also help earth scientists understand tectonic events and seismicity.

It is believed that permanent changes to metallic grains when under pressure are associated with the movement of structural irregularities in the grains, called dislocations. But the deformation of nanocrystalline materials has been controversial because it was thought that below a certain grain size, the structural irregularities would not form and the deformation would be dictated by motions of the boundary between grains instead. According to computer analysis, this critical limit would occur in nanocrystals at sizes between 10 and 30 nm in size.

Experimental work on nanocrystals under pressure has been limited by technical hurdles. But new capabilities using a technique called radial diamond anvil cell x-ray diffraction has opened the door to moving beyond computer modeling and into the lab.

The team, led by Bin Chen of the Lawrence Berkeley National Laboratory, was able to show that the activities of the structural irregularities that accompany deformation were occurring even in nickel nanocrystals of 3 nanometers in size when they were compressed to higher than 183,000 times normal atmospheric pressure (18.5 gigapascals). This demonstrates that so-called dislocation-associated deformation is a function of both pressure and particle size, as previously thought, but that the particle size can be smaller than computer modeling had anticipated.

"These findings help constrain the fundamental physics of deformation under pressure on a very small scale," Mao said. "They also demonstrate the importance of the radial diamond anvil cell x-ray diffraction tool for helping us understand these processes."


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. Chen, K. Lutker, S. V. Raju, J. Yan, W. Kanitpanyacharoen, J. Lei, S. Yang, H.-R. Wenk, H.-k. Mao, Q. Williams. Texture of Nanocrystalline Nickel: Probing the Lower Size Limit of Dislocation Activity. Science, 2012; 338 (6113): 1448 DOI: 10.1126/science.1228211

Cite This Page:

Carnegie Institution. "Building better structural materials." ScienceDaily. ScienceDaily, 13 December 2012. <www.sciencedaily.com/releases/2012/12/121213142303.htm>.
Carnegie Institution. (2012, December 13). Building better structural materials. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/2012/12/121213142303.htm
Carnegie Institution. "Building better structural materials." ScienceDaily. www.sciencedaily.com/releases/2012/12/121213142303.htm (accessed January 26, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Obama Reveals Nuclear Breakthrough on Landmark India Trip

Obama Reveals Nuclear Breakthrough on Landmark India Trip

Reuters - News Video Online (Jan. 25, 2015) In a glow of bonhomie, U.S. President Barack Obama and Indian Prime Minister Narendra Modi unveil a deal aimed at unlocking billions of dollars in nuclear trade. Pavithra George reports. Video provided by Reuters
Powered by NewsLook.com
NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com
Iconic Metal Toy Meccano Goes Robotic

Iconic Metal Toy Meccano Goes Robotic

Reuters - Innovations Video Online (Jan. 22, 2015) Classic children&apos;s toy Meccano has gone digital, releasing a programmable kit robot that can be controlled by voice recognition. The toymakers say Meccanoid G15 KS is easy to use and is compatible with existing Meccano pieces. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
The VueXL From VX1 Immersive Smartphone Headset!

The VueXL From VX1 Immersive Smartphone Headset!

Rumble (Jan. 22, 2015) The VueXL from VX1 is a product that you install your smartphone in and with the magic of magnification lenses, enlarges your smartphones screen so that it&apos;s like looking at a big screen TV. Check it out! Video provided by Rumble
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins