Featured Research

from universities, journals, and other organizations

Noise power on adhesion: New model may help robotic fingers, made of a soft surface, manipulate small objects

Date:
December 17, 2012
Source:
Springer Science+Business Media
Summary:
A new model could ultimately help robotic fingers, made of a soft surface, manipulate small objects. Imagine a solid ball rolling down a slightly inclined ramp. Scientists have studied the effect of random noise, such as vibrations, on a ball. They found it could lower the energy barrier to set the ball in motion.

Imagine a solid ball rolling down a slightly inclined ramp. What could be perceived as child's play is the focus of serious theoretical research by Manoj Chaudhury and Partho Goohpattader, two physicists from Lehigh University, Bethlehem, Pennsylvania, USA.

Their study, which is about to be published in EPJ E, has one thing in common with childhood behaviour. It introduces a mischievous idea, namely studying the effect of random noise, such as vibrations, on the ball. They found it could lower the energy barrier to set the ball in motion.

The authors used a ramp with a micro‐textured surface. This surface is akin to that of a gecko's feet, made of so-called microfibrils capable of adhering to any surface by deforming elastically. They then studied the effect of vibration on a ball left on the top of such a textured ramp. They found that the sphere starts rolling when subjected to a computer-generated random vibration. To set the ball in motion requires activation energy, the model shows. It has been long known that the same applies to the adhesion of molecules, on a much smaller scale, as predicted theoretically by the so-called Arrhenius kinetics. This study pinpoints a finite threshold of intensity for the vibration noise above which the ball is set in motion.

This finding could have implications for the removal of water droplets from super-hydrophobic surfaces such as plant leaves. Other applications could also include gecko feet-mimetic adhesives, better adhesion of rubber tires on roads, and the use of fluids, instead of electronics, to perform a digital operation. In addition, new MicroElectroMechanical systems (MEMs), based on robotic fingers capable of displacing a small object, could be assisted by noise.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. K. Chaudhury, P. S. Goohpattader. Noise-activated dissociation of soft elastic contacts. The European Physical Journal E, 2012; 35 (12) DOI: 10.1140/epje/i2012-12131-9

Cite This Page:

Springer Science+Business Media. "Noise power on adhesion: New model may help robotic fingers, made of a soft surface, manipulate small objects." ScienceDaily. ScienceDaily, 17 December 2012. <www.sciencedaily.com/releases/2012/12/121217091302.htm>.
Springer Science+Business Media. (2012, December 17). Noise power on adhesion: New model may help robotic fingers, made of a soft surface, manipulate small objects. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2012/12/121217091302.htm
Springer Science+Business Media. "Noise power on adhesion: New model may help robotic fingers, made of a soft surface, manipulate small objects." ScienceDaily. www.sciencedaily.com/releases/2012/12/121217091302.htm (accessed August 30, 2014).

Share This




More Matter & Energy News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins