Featured Research

from universities, journals, and other organizations

Noise power on adhesion: New model may help robotic fingers, made of a soft surface, manipulate small objects

Date:
December 17, 2012
Source:
Springer Science+Business Media
Summary:
A new model could ultimately help robotic fingers, made of a soft surface, manipulate small objects. Imagine a solid ball rolling down a slightly inclined ramp. Scientists have studied the effect of random noise, such as vibrations, on a ball. They found it could lower the energy barrier to set the ball in motion.

Imagine a solid ball rolling down a slightly inclined ramp. What could be perceived as child's play is the focus of serious theoretical research by Manoj Chaudhury and Partho Goohpattader, two physicists from Lehigh University, Bethlehem, Pennsylvania, USA.

Related Articles


Their study, which is about to be published in EPJ E, has one thing in common with childhood behaviour. It introduces a mischievous idea, namely studying the effect of random noise, such as vibrations, on the ball. They found it could lower the energy barrier to set the ball in motion.

The authors used a ramp with a micro‐textured surface. This surface is akin to that of a gecko's feet, made of so-called microfibrils capable of adhering to any surface by deforming elastically. They then studied the effect of vibration on a ball left on the top of such a textured ramp. They found that the sphere starts rolling when subjected to a computer-generated random vibration. To set the ball in motion requires activation energy, the model shows. It has been long known that the same applies to the adhesion of molecules, on a much smaller scale, as predicted theoretically by the so-called Arrhenius kinetics. This study pinpoints a finite threshold of intensity for the vibration noise above which the ball is set in motion.

This finding could have implications for the removal of water droplets from super-hydrophobic surfaces such as plant leaves. Other applications could also include gecko feet-mimetic adhesives, better adhesion of rubber tires on roads, and the use of fluids, instead of electronics, to perform a digital operation. In addition, new MicroElectroMechanical systems (MEMs), based on robotic fingers capable of displacing a small object, could be assisted by noise.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. K. Chaudhury, P. S. Goohpattader. Noise-activated dissociation of soft elastic contacts. The European Physical Journal E, 2012; 35 (12) DOI: 10.1140/epje/i2012-12131-9

Cite This Page:

Springer Science+Business Media. "Noise power on adhesion: New model may help robotic fingers, made of a soft surface, manipulate small objects." ScienceDaily. ScienceDaily, 17 December 2012. <www.sciencedaily.com/releases/2012/12/121217091302.htm>.
Springer Science+Business Media. (2012, December 17). Noise power on adhesion: New model may help robotic fingers, made of a soft surface, manipulate small objects. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2012/12/121217091302.htm
Springer Science+Business Media. "Noise power on adhesion: New model may help robotic fingers, made of a soft surface, manipulate small objects." ScienceDaily. www.sciencedaily.com/releases/2012/12/121217091302.htm (accessed October 26, 2014).

Share This



More Matter & Energy News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins