Featured Research

from universities, journals, and other organizations

Biological pathway that controls the leakiness of blood vessels unraveled

Date:
December 17, 2012
Source:
Mayo Clinic
Summary:
Scientists have decoded the entire pathway that regulates leakiness of blood vessels — a condition that promotes a wide number of disorders, such as heart disease, cancer growth and spread, inflammation and respiratory distress.

A research team led by scientists at Mayo Clinic in Florida have decoded the entire pathway that regulates leakiness of blood vessels -- a condition that promotes a wide number of disorders, such as heart disease, cancer growth and spread, inflammation and respiratory distress.

Related Articles


They say their findings, published online Dec. 17 in the Journal of Cell Biology, suggest that several agents already being tested for other conditions might reverse vessel leakiness.

"Now that we understand a lot more about the pathway that leads to leaky blood vessels, we can begin to try to target it in an efficient way, and that is very exciting," says the study's lead investigator, Panos Z. Anastasiadis, Ph.D., chair of the Department of Cancer Biology at Mayo Clinic in Florida.

Physicians have attempted to regulate that pathway in cancer through use of VEGF inhibitors, such as Bevacizumab, but these drugs are not as effective as they might be if other parts of the pathway were also inhibited, Dr. Anastasiadis says.

The research team, led by Dr. Anastasiadis and Arie Horowitz, Ph.D., at Cleveland Clinic Foundation, found that VEGF is one of two different molecules that affect a key downstream protein, Syx, to regulate the permeability of blood vessels.

Blood vessels are made up of endothelial cells that have to fit tightly together to form a solid tubular structure that blood can flow through. The researchers discovered that VEGF turns off Syx, which normally ensures the junctions between endothelial cells are strong. Without Syx, adhesion between the cells is loose, and the blood vessels are leaky. When new blood vessels are needed -- such as to feed a growing tumor -- VEGF loosens up endothelial cells so new vessels can sprout.

Then, after new vessels are formed, a second molecule, angiopoietin-1 (Ang1) works to glue the cells back together, Dr. Anastasiadis says. "These molecules have opposing, yin and yang effects. VEGF kicks Syx out of the junctions between cells, promoting leakiness, and Ang1 brings it back in to stabilize the vessel," he says.

The issue in cancer, however, is that VEGF overwhelms the system. "There isn't enough Ang1 to glue the vessels back together, and this leakiness allows cancer cells to escape the tumor and travel to other parts of the body," Dr. Anastasiadis says. "In late stages of the cancer, it also promotes the leaking of liquids into organs, such as the lungs. This results in profound effects that are often lethal."

Other disorders, such as inflammation and sepsis, a deadly bacterial infection that can result from excess liquid in lungs, are also induced by a leaky vascular system, he says.

Based on a detailed analysis of molecules involved in the VEGF/Ang1/Syx pathway, Dr. Anastasiadis believes that several experimental agents might help reverse vascular leakiness. One of them inhibits protein kinase D1 (PKD1), which might prevent endothelial cells from coming apart from loss of adhesion, and the other is a Rho-kinase inhibitor that prevents endothelial cells from contracting -- which they must do to loosen up and become leaky.

"We now have new directions for both further basic research into leaky blood vessels and for potential clinical treatment," Dr. Anastasiadis says.

Investigators from Johns Hopkins University, Dartmouth Medical School, and Case Western Reserve University also contributed to the study.

The research was funded by grants from the National Institutes of Health, the Hitchcock Foundation, and the Mayo Graduate School, and an American Heart Association's Scientist Development Grant.


Story Source:

The above story is based on materials provided by Mayo Clinic. Note: Materials may be edited for content and length.


Cite This Page:

Mayo Clinic. "Biological pathway that controls the leakiness of blood vessels unraveled." ScienceDaily. ScienceDaily, 17 December 2012. <www.sciencedaily.com/releases/2012/12/121217102527.htm>.
Mayo Clinic. (2012, December 17). Biological pathway that controls the leakiness of blood vessels unraveled. ScienceDaily. Retrieved April 25, 2015 from www.sciencedaily.com/releases/2012/12/121217102527.htm
Mayo Clinic. "Biological pathway that controls the leakiness of blood vessels unraveled." ScienceDaily. www.sciencedaily.com/releases/2012/12/121217102527.htm (accessed April 25, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, April 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

85 Killed in Niger by Meningitis Since Start of Year

85 Killed in Niger by Meningitis Since Start of Year

AFP (Apr. 24, 2015) A meningitis outbreak in Niger has killed 85 people since the start of the year prompting authorities to close schools in the capital Niamey until Monday. Video provided by AFP
Powered by NewsLook.com
C-Section Births a Trend in Brazil

C-Section Births a Trend in Brazil

AFP (Apr. 24, 2015) More than half of Brazil&apos;s babies are born via cesarean section, as mothers and doctors opt for a faster and less painful experience despite the health risks. Duration: 02:02 Video provided by AFP
Powered by NewsLook.com
Anti-Malaria Jab Hope

Anti-Malaria Jab Hope

Reuters - News Video Online (Apr. 24, 2015) The world&apos;s first anti-malaria vaccine could get the go-ahead for use in Africa from October if approved by international regulators. Paul Chapman reports. Video provided by Reuters
Powered by NewsLook.com
3D Food Printing: The Meal of the Future?

3D Food Printing: The Meal of the Future?

AP (Apr. 23, 2015) Developers of 3D food printing hope the culinary technology will revolutionize the way we cook and eat. (April 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins