Featured Research

from universities, journals, and other organizations

Development of new corneal cell line provides powerful tool

Date:
December 27, 2012
Source:
Massachusetts Eye and Ear Infirmary
Summary:
Scientists have developed of HCENC-21 and HCEnC-21T, two novel model systems for human corneal endothelium.

Human corneal endothelial cells (HCEnCs) form a monolayer of hexagonal cells whose main function is to maintain corneal clarity by regulating corneal hydration. Cell loss due to aging or corneal endothelial disorders, such as Fuchs dystrophy, can lead to cornea edema and blindness, resulting in the need for cornea transplants.

Studying human corneal endothelium has been difficult for cell biologists because limited cellular model systems exist and have significant drawbacks. The major drawback is that HCEnC cells do not divide and there is a limited source of these cells both for patient transplantation and for study in the laboratory. This field of study is now easier.

Scientists from the Schepens Eye Research Institute, Mass. Eye and Ear, have developed of HCENC-21 and HCEnC-21T, two novel model systems for human corneal endothelium. Their findings, "Telomerase Immortalization of Human Corneal Endothelial Cells Yield Functional Hexagonal Monolayers," are online in the PLOS ONE.

A research team led by Ula Jurkunas, M.D., developed first-of their kind model systems for human corneal endothelium.

"These models mimic very well the critical characteristics and functionalities known from the tissue in the eye," Dr. Jurkunas said. "They also fulfill essential technical requirements, e.g. indefinite number of and a high rate of cell division, to be a powerful tool. They will enable cell biologists to more reliably study human corneal endothelium in health and disease. The ability to enhance HCEnC cell self renewal and growth opens a new window of development of novel regenerative therapies for corneal swelling, hopefully reducing the need for corneal transplantation in the future."


Story Source:

The above story is based on materials provided by Massachusetts Eye and Ear Infirmary. Note: Materials may be edited for content and length.


Journal Reference:

  1. Thore Schmedt, Yuming Chen, Tracy T. Nguyen, Shimin Li, Joseph A. Bonanno, Ula V. Jurkunas. Telomerase Immortalization of Human Corneal Endothelial Cells Yields Functional Hexagonal Monolayers. PLoS ONE, 2012; 7 (12): e51427 DOI: 10.1371/journal.pone.0051427

Cite This Page:

Massachusetts Eye and Ear Infirmary. "Development of new corneal cell line provides powerful tool." ScienceDaily. ScienceDaily, 27 December 2012. <www.sciencedaily.com/releases/2012/12/121227110755.htm>.
Massachusetts Eye and Ear Infirmary. (2012, December 27). Development of new corneal cell line provides powerful tool. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2012/12/121227110755.htm
Massachusetts Eye and Ear Infirmary. "Development of new corneal cell line provides powerful tool." ScienceDaily. www.sciencedaily.com/releases/2012/12/121227110755.htm (accessed April 16, 2014).

Share This



More Health & Medicine News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Outbreak Now Linked To 121 Deaths

Ebola Outbreak Now Linked To 121 Deaths

Newsy (Apr. 15, 2014) The ebola virus outbreak in West Africa is now linked to 121 deaths. Health officials fear the virus will continue to spread in urban areas. Video provided by Newsy
Powered by NewsLook.com
Cognitive Function: Is It All Downhill From Age 24?

Cognitive Function: Is It All Downhill From Age 24?

Newsy (Apr. 15, 2014) A new study out of Canada says cognitive motor performance begins deteriorating around age 24. Video provided by Newsy
Powered by NewsLook.com
How Mt. Everest Helped Scientists Research Diabetes

How Mt. Everest Helped Scientists Research Diabetes

Newsy (Apr. 15, 2014) British researchers were able to use Mount Everest's low altitudes to study insulin resistance. They hope to find ways to treat diabetes. Video provided by Newsy
Powered by NewsLook.com
Carpenter's Injury Leads To Hundreds Of 3-D-Printed Hands

Carpenter's Injury Leads To Hundreds Of 3-D-Printed Hands

Newsy (Apr. 14, 2014) Richard van As lost all fingers on his right hand in a woodworking accident. Now, he's used the incident to create a prosthetic to help hundreds. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins