Featured Research

from universities, journals, and other organizations

Power spintronics: Producing AC voltages by manipulating magnetic fields

Date:
January 3, 2013
Source:
American Institute of Physics (AIP)
Summary:
Scientists are putting a new spin on their approach to generating electrical current by harnessing a recently identified electromotive force known as spinmotive force, which is related to the field of spintronics that addresses such challenges as improving data storage in computers. Now, a novel application of spintronics is the highly efficient and direct conversion of magnetic energy to electric voltage by using magnetic nanostructures and manipulating the dynamics of magnetization.

Scientists are putting a new spin on their approach to generating electrical current by harnessing a recently identified electromotive force known as spinmotive force, which is related to the field of spintronics that addresses such challenges as improving data storage in computers. Now, a novel application of spintronics is the highly efficient and direct conversion of magnetic energy to electric voltage by using magnetic nanostructures and manipulating the dynamics of magnetization.

According to a report published in the American Institute of Physics' (AIP) journal Applied Physics Letters, this conversion could be the foundation for future development of spin-based power electronics, a field the authors call "power spintronics." Their newly published results of an experimental model suggest that a power spintronics-based device may one day be a promising approach to obtaining alternating current (AC) voltages from direct current (DC) magnetic fields.

The researchers demonstrated for the first time the feasibility of a device that generates a voltage based on manipulating an effective magnetic field within a nanowire that arises from width modulation. Technically such a field is not a true magnetic field, but it can be viewed as such. The team tested a one-dimensional model. It showed that DC magnetic field characteristics such as magnitude, and design parameters such as wire width, can be used to control, or "tune," the frequency and amplitude of AC current. Importantly, their results showed that a variable frequency ranging from megahertz to gigahertz can be achieved. Control and range in tuning ability are highly desirable management features in generating current.

The team's results suggest that applying their spintronics approach may one day meet a variety of commercial energy demands due to control and scalability.


Story Source:

The above story is based on materials provided by American Institute of Physics (AIP). Note: Materials may be edited for content and length.


Journal Reference:

  1. Jun'ichi Ieda, Sadamichi Maekawa. Magnetic power inverter: AC voltage generation from DC magnetic fields. Applied Physics Letters, 2012; 101 (25): 252413 DOI: 10.1063/1.4773214

Cite This Page:

American Institute of Physics (AIP). "Power spintronics: Producing AC voltages by manipulating magnetic fields." ScienceDaily. ScienceDaily, 3 January 2013. <www.sciencedaily.com/releases/2013/01/130103130800.htm>.
American Institute of Physics (AIP). (2013, January 3). Power spintronics: Producing AC voltages by manipulating magnetic fields. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2013/01/130103130800.htm
American Institute of Physics (AIP). "Power spintronics: Producing AC voltages by manipulating magnetic fields." ScienceDaily. www.sciencedaily.com/releases/2013/01/130103130800.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins