Featured Research

from universities, journals, and other organizations

New path to more efficient organic solar cells uncovered

Date:
January 7, 2013
Source:
DOE/Lawrence Berkeley National Laboratory
Summary:
Working at Berkeley Lab's Advanced Light Source, an international team of scientists found that for highly efficient polymer/organic solar cells, size matters. Impure domains if made sufficiently small can lead to improved performances in polymer-based organic photovoltaics.

Molecular view of polymer/fullerene solar film showing an interface between acceptor and donor domains. Red dots are PC71BM molecules and blue lines represent PTB7 chains. Excitons are shown as yellow dots, purple dots are electrons and green dots represent holes.
Credit: Image courtesy of Harald Ade, NC State University

Why are efficient and affordable solar cells so highly coveted? Volume. The amount of solar energy lighting up Earth's land mass every year is nearly 3,000 times the total amount of annual human energy use. But to compete with energy from fossil fuels, photovoltaic devices must convert sunlight to electricity with a certain measure of efficiency. For polymer-based organic photovoltaic cells, which are far less expensive to manufacture than silicon-based solar cells, scientists have long believed that the key to high efficiencies rests in the purity of the polymer/organic cell's two domains -- acceptor and donor. Now, however, an alternate and possibly easier route forward has been shown.

Related Articles


Working at Berkeley Lab's Advanced Light Source (ALS), a premier source of X-ray and ultraviolet light beams for research, an international team of scientists found that for highly efficient polymer/organic photovoltaic cells, size matters.

"We've shown that impure domains if made sufficiently small can also lead to improved performances in polymer-based organic photovoltaic cells," says Harald Ade, a physicist at North Carolina State University, who led this research. "There seems to be a happy medium, a sweet-spot of sorts, between purity and domain size that should be much easier to achieve than ultra-high purity."

Ade, a longtime user of the ALS, is the corresponding author of a paper describing this work in Advanced Energy Materials titled "Absolute Measurement of Domain Composition and Nanoscale Size Distribution Explains Performance in PTB7:PC71 BM Solar Cells." Co-authors are Brian Collins, Zhe Li, John Tumbleston, Eliot Gann and Christopher McNeill.

Solar cell conversion efficiency in polymer/organic photovoltaic cells hinges on excitons -- electron/hole pairs energized by sunlight -- getting to the interfaces of the donor and acceptor domains quickly so as to minimize energy lost as heat. Conventional wisdom held that the greater the purity of the domains, the fewer the impedances and the faster the exciton journey.

Ade and his co-authors became the first to simultaneously measure the domain size, composition and crystallinity of an organic solar cell. This feat was made possible by ALS beamlines 11.0.1.2, a Resonant Soft X-ray Scattering (R-SoXS) facility; 7.3.3, a Small- and Wide-Angle X-Ray Scattering (SAXS/WAXS/) end-station; and 5.3.2, an end-station for Scanning Transmission X-Ray Microscopy (STXM).

Says Collins, the first author on the Advanced Energy Materials paper, "The combination of these three ALS beamlines enabled us to obtain comprehensive pictures of polymer-based organic photovoltaic film morphology from the nano- to the meso-scales. Until now, this information has been unattainable."

The international team used the trifecta of ALS beams to study the polymer/fullerence blend PTB7:PC71BM in thin films made from chlorobenzene solution with and without the addition (three-percent by volume) of the solvent diiodooctane. The films were composed of droplet-like dispersions in which the dominant acceptor domain size without the additive was about 177 nanometers. The addition of the solvent shrank the acceptor domain size down to about 34 nanometers while preserving the film's composition and crystallinity. This resulted in an efficiency gain of 42-percent.

"In showing for the first time just how pure and how large the acceptor domains in organic solar devices actually are, as well as what the interface with the donor domain looks like, we've demonstrated that the impact of solvents and additives on device performance can be dramatic and can be systematically studied," Ade says. "In the future, our technique should help advance the rational design of polymer-based organic photovoltaic films."

This research was primarily supported by the DOE Office of Science, which also supports the ALS.


Story Source:

The above story is based on materials provided by DOE/Lawrence Berkeley National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Brian A. Collins, Zhe Li, John R. Tumbleston, Eliot Gann, Christopher R. McNeill, Harald Ade. Absolute Measurement of Domain Composition and Nanoscale Size Distribution Explains Performance in PTB7:PC71BM Solar Cells. Advanced Energy Materials, 2012; DOI: 10.1002/aenm.201200377

Cite This Page:

DOE/Lawrence Berkeley National Laboratory. "New path to more efficient organic solar cells uncovered." ScienceDaily. ScienceDaily, 7 January 2013. <www.sciencedaily.com/releases/2013/01/130107130939.htm>.
DOE/Lawrence Berkeley National Laboratory. (2013, January 7). New path to more efficient organic solar cells uncovered. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2013/01/130107130939.htm
DOE/Lawrence Berkeley National Laboratory. "New path to more efficient organic solar cells uncovered." ScienceDaily. www.sciencedaily.com/releases/2013/01/130107130939.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
British 'Bio-Bus' Is Powered By Human Waste

British 'Bio-Bus' Is Powered By Human Waste

Buzz60 (Nov. 21, 2014) British company GENeco debuted what its calling the Bio-Bus, a bus fueled entirely by biomethane gas produced from food scraps and sewage. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins