Featured Research

from universities, journals, and other organizations

Separating substances with a 100-year-old idea

Date:
January 15, 2013
Source:
Eindhoven University of Technology
Summary:
Researchers have built an electronic variant of a Brownian ratchet that allows microscopic particles to be separated by size.

Smoluchowski’s Brownian ratchet. A paddle wheel (right) is connected by a shaft to a wheel with a pawl – the ratchet. Air molecules collide with the paddles. When the system is in equilibrium, just the same number of molecules collide with each side of a paddle, and the wheel will not perform a net rotation. The purpose of the ratchet is to allow the wheel to turn in only one direction: a net Brownian movement. That’s not possible, according to the laws of thermodynamics. You can’t extract energy from a system that is in equilibrium. Feynman’s solution was to take the system out of equilibrium, for example by placing the paddle wheel in a higher-temperature environment.
Credit: Image courtesy of Eindhoven University of Technology

Dutch researcher Wijnand Germs built an electronic variant of a Brownian ratchet that allows microscopic particles to be separated by size.

How can you make use of the energy from the random collisions between molecules, known as Brownian motion? With a 'Brownian ratchet', an idea that dates back to 1912. Doctoral candidate Wijnand Germs built an electronic variant of the ratchet that allows microscopic particles to be separated by size. The principle can be applied in medical self-testers. Germs will gain his PhD on 16 January at Eindhoven University of Technology (TU/e).

Particles in a fluid are constantly thrown backwards and forwards by collisions with the molecules of the fluid. This is called Brownian motion. The Polish physicist Marian Smoluchowski conceived a thought experiment in 1912 in which the energy from those random collisions could be used to make objects move in a well-defined direction. However this 'Brownian ratchet' conflicted with the laws of physics, because it suggested that a wheel could be made to rotate spontaneously. Fifty years later the American physicist Richard Feynman thought of a crucial modification through which the ratchet really could be made to work.

For the past 20 years or so, the Brownian ratchet hasn't just existed on paper -- many variants of it have been created experimentally. This 'scientific curiosity' has proved to be a useful tool in an increasing number of fields. In his doctoral thesis, Wijnand Germs of the Molecular Materials and Nanosystems (M2N) research group at TU/e focuses on a Brownian ratchet that can make polystyrene beads with diameters between 300 and 500 nanometers move.

His ratchet consists of a very narrow water channel in which the beads are suspended. Under the channel are carefully designed electrodes that create an asymmetric energy landscape -- in other words electronic 'hills and valleys'. When Germs switches off the electrical voltage, the beads distribute themselves through the collisions with water molecules (Brownian motion) in both directions of the channel. Then, when the voltage is switched on again, the beads are captured in the 'valleys'. But since the landscape is asymmetrical, more beads are captured on one direction than on the other. Which means that, on average, the beads have moved.

Germs' research shows that the size of the beads determines the extent of this movement. That means this type of ratchet can be used to separate particles -- or molecules in general -- by size. That can be useful in the medical self-testers (labs-on-a-chip) which are currently under development. In these devices blood, saliva or urine are analyzed in fine microchannels. Separation of particles by size is also of great importance in the production of nanoparticles.


Story Source:

The above story is based on materials provided by Eindhoven University of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Eindhoven University of Technology. "Separating substances with a 100-year-old idea." ScienceDaily. ScienceDaily, 15 January 2013. <www.sciencedaily.com/releases/2013/01/130115101429.htm>.
Eindhoven University of Technology. (2013, January 15). Separating substances with a 100-year-old idea. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2013/01/130115101429.htm
Eindhoven University of Technology. "Separating substances with a 100-year-old idea." ScienceDaily. www.sciencedaily.com/releases/2013/01/130115101429.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins