Featured Research

from universities, journals, and other organizations

3-D mapping of lipid orientation in biological tissues such as skin

Date:
January 15, 2013
Source:
CNRS (Délégation Paris Michel-Ange)
Summary:
A non-invasive method that makes it possible to observe in situ how assemblies of lipids are oriented in biological tissues, and which does not require any labeling or preparation,  has been developed. The work should enable the detection and characterization of certain pathologies associated with molecular disorders in the skin or in the nervous tissue.

Mapping of lipid assemblies in a human skin biopsy. P-THG microscopy allows molecular order to be probed in situ at the micrometric scale. (Left) Diagram showing the structure of the outer layer of the skin, the stratum corneum (SC). Multilamellar lipid structures surround dead cells known as corneocytes. These organized structures contribute to the skin barrier function. (Right) Mapping of the average orientation of lipids in a fold of the stratum corneum of a human skin biopsy, obtained by P-THG microscopy. The image shows a 3 µm thick optical section recorded 30 µm under the surface of the skin.
Credit: © École Polytechnique, CNRS, Inserm / American Physical Society

A non-invasive method that makes it possible to observe in situ how assemblies of lipids are oriented in biological tissues, and which does not require any labeling or preparation, has been developed by physicists from the Laboratoire d'Optique et Biosciences (CNRS / Inserm / École Polytechnique). This work, published on the 14 January 2013 in the online journal Physical Review X, should enable the detection and characterization of certain pathologies associated with molecular disorders in the skin or in the nervous tissue.

Multilamellar assemblies of lipids (fats) play a key role in certain physiological functions, not just within the skin (which serves as a protective barrier against external aggressions) but also in the way neurons function. The disorganization of these assemblies is often linked to serious pathologies. However, the techniques normally used to determine the arrangement of molecules, such as X-ray scattering or nuclear magnetic resonance, are not suitable for studying intact biological tissues with good cellular resolution. In addition, they often require labeling and/or significant sample preparation.

First developed in the 1990s, multiphoton microscopy allows intact biological tissue to be observed in three dimensions with sub-cellular resolution at depths exceeding several hundred micrometers. Researchers from the Laboratoire d'Optique et Biosciences have identified a new indicator, known as P-THG (polarized third-harmonic generation), which is sensitive to molecular order in multi-layer lipid assemblies. Thanks to this optical contrast source, it is now possible to map the general orientation and degree of alignment of lipid assemblies in three dimensions and also to observe their possible disorganization. This novel multiphoton microscopy technique thus provides a non-invasive tool for probing molecular alignment in situ in biological media.

This approach enables scientists to map, with unparalleled sensitivity and contrast, the organization of lipids in human skin biopsies without prior preparation or labeling. This work lays the foundations for future developments in multiphoton microscopy as a method for measuring molecular order in intact biological media and opens the way to potential novel applications for detecting and studying the early stages of pathologies linked to molecular disorders.


Story Source:

The above story is based on materials provided by CNRS (Délégation Paris Michel-Ange). Note: Materials may be edited for content and length.


Journal Reference:

  1. Maxwell Zimmerley, Pierre Mahou, Delphine Débarre, Marie-Claire Schanne-Klein, Emmanuel Beaurepaire. Probing Ordered Lipid Assemblies with Polarized Third-Harmonic-Generation Microscopy. Physical Review X, 2013; 3 (1) DOI: 10.1103/PhysRevX.3.011002

Cite This Page:

CNRS (Délégation Paris Michel-Ange). "3-D mapping of lipid orientation in biological tissues such as skin." ScienceDaily. ScienceDaily, 15 January 2013. <www.sciencedaily.com/releases/2013/01/130115111501.htm>.
CNRS (Délégation Paris Michel-Ange). (2013, January 15). 3-D mapping of lipid orientation in biological tissues such as skin. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2013/01/130115111501.htm
CNRS (Délégation Paris Michel-Ange). "3-D mapping of lipid orientation in biological tissues such as skin." ScienceDaily. www.sciencedaily.com/releases/2013/01/130115111501.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins