Featured Research

from universities, journals, and other organizations

New material for warm-white LED lights

Date:
January 18, 2013
Source:
University of Georgia
Summary:
Light emitting diodes, more commonly called LEDs, are known for their energy efficiency and durability, but the bluish, cold light of current white LEDs has precluded their widespread use for indoor lighting. Now, scientists have fabricated what is thought to be the world's first LED that emits a warm white light using a single light emitting material, or phosphor, with a single emitting center for illumination.

The University of Georgia's Zhengwei Pan, center, an associate professor of physics and engineering, holds a prototype of what is thought to be the world's first single-phosphor, single-emitting-center-converted LED that emits a warm white light while the UGA College of Engineering's Feng Liu, left, and Xufan Li look on.
Credit: Image courtesy of University of Georgia

Light emitting diodes, more commonly called LEDs, are known for their energy efficiency and durability, but the bluish, cold light of current white LEDs has precluded their widespread use for indoor lighting.

Now, University of Georgia scientists have fabricated what is thought to be the world's first LED that emits a warm white light using a single light emitting material, or phosphor, with a single emitting center for illumination. The material is described in detail in the current edition of the Nature Publishing Group journal Light: Science and Applications.

"Right now, white LEDs are mainly used in flashlights and in automotive lamps, but they give off a bluish, cool light that people tend to dislike, especially in indoor lighting," said senior author Zhengwei Pan, an associate professor in the department of physics in the UGA Franklin College of Arts and Sciences and in the College of Engineering. "Our material achieves a warm color temperature while at the same time giving highly accurate color rendition, which is something no single-phosphor-converted LED has ever been shown to do."

Two main variables are used to assess the quality of artificial light, Pan explained. Correlated color temperature measures the coolness or warmth of a light, and temperatures of less than 4,000 kelvins are ideal for indoor lighting. Correlated color temperatures above 5,000 kelvins, on the other hand, give off the bluish color that white LEDs are known for. The other important measure, color rendition, is the ability of a light source to replicate natural light. A value of more than 80 is ideal for indoor lighting, with lower values resulting in colors that don't seem true to life.

The material that Pan and his colleagues fabricated meets both thresholds, with a correlated color temperature of less than 4,000 kelvins and a color rendering index of 85.

Warm white light can commonly be achieved with a blue LED chip coated with light emitting materials, or phosphors, of different emitting colors to create what are called phosphor-based white LEDs, Pan said. Combining the source materials in an exact ratio can be difficult and costly, however, and the resulting color often varies because each of the source materials responds differently to temperature variations.

"The use of a single phosphor solves the problem of color stability because the color quality doesn't change with increasing temperatures," said lead author Xufan Li, a doctoral student in the College of Engineering.

To create the new phosphor, Pan and his team combine minute quantities of europium oxide with aluminum oxide, barium oxide and graphite powders. They then heat the powdered materials at 1,450 degrees Celsius (2,642 degrees Fahrenheit) in a tube furnace. The vacuum of the furnace pulls the vaporized materials onto a substrate, where they are deposited as a yellow luminescent compound. When the yellow luminescent compound is encapsulated in a bulb and illuminated by a blue LED chip, the result is a warm white light.

Although his team's results are promising, Pan emphasized that there are still hurdles to be overcome before the material is used to light homes, businesses and schools. The efficiency of the new material is much lower than that of today's bluish white LEDs. Scaling the production to an industrial scale will be challenging as well, since even slight variations in temperature and pressure in the phosphor synthesis process result in materials with different luminescent colors.

The new yellow phosphor also has a new lattice structure that has not been reported before. The researchers currently are working to discern how the ions in the compound are arranged in hopes that a better understanding of the compound at an atomic level will allow them to improve its efficiency.

"We still have more work to do," Pan said, "but the color temperature and rendition that we have achieved gives us a very good starting point."


Story Source:

The above story is based on materials provided by University of Georgia. The original article was written by Sam Fahmy. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xufan Li, John D Budai, Feng Liu, Jane Y Howe, Jiahua Zhang, Xiao-Jun Wang, Zhanjun Gu, Chengjun Sun, Richard S Meltzer, Zhengwei Pan. New yellow Ba0.93Eu0.07Al2O4 phosphor for warm-white light-emitting diodes through single-emitting-center conversion. Light: Science & Applications, 2013; 2 (1): e50 DOI: 10.1038/lsa.2013.6

Cite This Page:

University of Georgia. "New material for warm-white LED lights." ScienceDaily. ScienceDaily, 18 January 2013. <www.sciencedaily.com/releases/2013/01/130118072252.htm>.
University of Georgia. (2013, January 18). New material for warm-white LED lights. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2013/01/130118072252.htm
University of Georgia. "New material for warm-white LED lights." ScienceDaily. www.sciencedaily.com/releases/2013/01/130118072252.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Shipping Crates Get New 'lease' On Life

Shipping Crates Get New 'lease' On Life

Reuters - Business Video Online (July 25, 2014) Shipping containers have been piling up as America imports more than it exports. Some university students in Washington D.C. are set to get a first-hand lesson in recycling. Their housing is being built using refashioned shipping containers. Lily Jamali reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins