Featured Research

from universities, journals, and other organizations

Astrocytes identified as target for new depression therapy: Starry brain cells used to mimic sleep deprivation

Date:
January 23, 2013
Source:
Tufts University
Summary:
Neuroscientists have found that our star-shaped brain cells may be responsible for the rapid improvement in mood in depressed patients after acute sleep deprivation. The researchers report that the findings may help lead to the development of effective and fast-acting drugs to treat depression, particularly in psychiatric emergencies.

Neuroscience researchers from Tufts University have found that our star-shaped brain cells, called astrocytes, may be responsible for the rapid improvement in mood in depressed patients after acute sleep deprivation. This in vivo study, published in the current issue of Translational Psychiatry, identified how astrocytes regulate a neurotransmitter involved in sleep. The researchers report that the findings may help lead to the development of effective and fast-acting drugs to treat depression, particularly in psychiatric emergencies.

Drugs are widely used to treat depression, but often take weeks to work effectively. Sleep deprivation, however, has been shown to be effective immediately in approximately 60% of patients with major depressive disorders. Although widely-recognized as helpful, it is not always ideal because it can be uncomfortable for patients, and the effects are not long-lasting.

During the 1970s, research verified the effectiveness of acute sleep deprivation for treating depression, particularly deprivation of rapid eye movement sleep, but the underlying brain mechanisms were not known.

Most of what we understand of the brain has come from research on neurons, but another type of largely-ignored cell, called glia, are their partners. Although historically thought of as a support cell for neurons, the Phil Haydon group at Tufts University School of Medicine has shown in animal models that a type of glia, called astrocytes, affect behavior.

Haydon's team had established previously that astrocytes regulate responses to sleep deprivation by releasing neurotransmitters that regulate neurons. This regulation of neuronal activity affects the sleep-wake cycle. Specifically, astrocytes act on adenosine receptors on neurons. Adenosine is a chemical known to have sleep-inducing effects.

During our waking hours, adenosine accumulates and increases the urge to sleep, known as sleep pressure. Chemicals, such as caffeine, are adenosine receptor antagonists and promote wakefulness. In contrast, an adenosine receptor agonist creates sleepiness.

"In this study, we administered three doses of an adenosine receptor agonist to mice over the course of a night that caused the equivalent of sleep deprivation. The mice slept as normal, but the sleep did not reduce adenosine levels sufficiently, mimicking the effects of sleep deprivation. After only 12 hours, we observed that mice had decreased depressive-like symptoms and increased levels of adenosine in the brain, and these results were sustained for 48 hours," said first author Dustin Hines, Ph.D., a post-doctoral fellow in the department of neuroscience at Tufts University School of Medicine (TUSM).

"By manipulating astrocytes we were able to mimic the effects of sleep deprivation on depressive-like symptoms, causing a rapid and sustained improvement in behavior," continued Hines.

"Further understanding of astrocytic signaling and the role of adenosine is important for research and development of anti-depressant drugs. Potentially, new drugs that target this mechanism may provide rapid relief for psychiatric emergencies, as well as long-term alleviation of chronic depressive symptoms," said Naomi Rosenberg, Ph.D., dean of the Sackler School of Graduate Biomedical Sciences and vice dean for research at Tufts University School of Medicine. "The team's next step is to further understand the other receptors in this system and see if they, too, can be affected."

Senior author, Phillip G. Haydon, Ph.D., is the Annetta and Gustav Grisard professor and chair of the department of neuroscience at Tufts University School of Medicine (TUSM). Haydon is also a member of the neuroscience program faculty at the Sackler School of Graduate Biomedical Sciences at Tufts.

Additional authors are Luke I. Schmitt, B.S., a Ph.D. candidate in neuroscience at the Sackler School; Rochelle M. Hines, Ph.D., a post-doctoral fellow in the department of neuroscience at TUSM; and Stephen J. Moss, Ph.D., a professor of neuroscience at Tufts University School of Medicine and a member of the neuroscience program faculty at the Sackler School.


Story Source:

The above story is based on materials provided by Tufts University. Note: Materials may be edited for content and length.


Journal Reference:

  1. D J Hines, L I Schmitt, R M Hines, S J Moss, P G Haydon. Antidepressant effects of sleep deprivation require astrocyte-dependent adenosine mediated signaling. Translational Psychiatry, 2013; 3 (1): e212 DOI: 10.1038/tp.2012.136

Cite This Page:

Tufts University. "Astrocytes identified as target for new depression therapy: Starry brain cells used to mimic sleep deprivation." ScienceDaily. ScienceDaily, 23 January 2013. <www.sciencedaily.com/releases/2013/01/130123093725.htm>.
Tufts University. (2013, January 23). Astrocytes identified as target for new depression therapy: Starry brain cells used to mimic sleep deprivation. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2013/01/130123093725.htm
Tufts University. "Astrocytes identified as target for new depression therapy: Starry brain cells used to mimic sleep deprivation." ScienceDaily. www.sciencedaily.com/releases/2013/01/130123093725.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Liberia Pleads for Help to Fight Ebola

Liberia Pleads for Help to Fight Ebola

AP (Sep. 22, 2014) Liberia's finance minister is urging the international community to quickly follow through on pledges of cash to battle Ebola. Bodies are piling up in the capital Monrovia as the nation awaits more help. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Ebola Doctor Says Border Controls Critical

Ebola Doctor Says Border Controls Critical

AP (Sep. 22, 2014) A Florida doctor who helped fight the expanding Ebola outbreak in West Africa says the disease can be stopped, but only if nations quickly step up their response and make border control a priority. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Global Ebola Aid Increasing But Critics Say It's Late

Global Ebola Aid Increasing But Critics Say It's Late

Newsy (Sep. 21, 2014) More than 100 tons of medical supplies were sent to West Africa on Saturday, but aid workers say the global response is still sluggish. Video provided by Newsy
Powered by NewsLook.com
Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins