Featured Research

from universities, journals, and other organizations

Novel materials: Smart and magnetic

Date:
January 28, 2013
Source:
Springer Science+Business Media
Summary:
Varying magnetic fields and temperature conditions help to elucidate smart materials’ transitory magnetic disorder.

Varying magnetic fields and temperature conditions help to elucidate smart materials' transitory magnetic disorder

Related Articles


Novel, smart materials like shape memory alloys very often display so-called glass-like magnetism. Other smart materials with similar properties include those which, when exposed to a magnetic field, change their electrical resistance, known as manganites, or change their temperature, known as magnetocaloric materials. Kaustav Mukherjee and his colleagues from the Consortium for Scientific Research Indore in India studied a key stage in the formation of such a magnetic glass material, called Pr0.5 Ca0.5 Mn0.975 Al0.025 O3, in a paper about to be published in The European Physical Journal B.

They focused on the stage where 'water to ice' style transformation -- referred to as first-order magnetic transformation -- is arrested upon cooling. This is a phenomenon dubbed kinetic arrest, corresponding to a temperature where the material undergoes a transition from a magnetic to a non-magnetic state, with the two phases competing with each other.

Glass-like magnetic materials display fragile magnetic properties. They draw their name from the similarity to the fragility observed in conventional, chemical glass. If a magnetic field is applied while the sample is cooled to what is referred to as its transition temperature, magnetisation of the sample increases and the material becomes magnetic. However, the magnetisation continues to increase further with time, even if the magnetic field and temperature remain constant.

The authors performed bulk measurements of magnetisation on powder samples of Pr0.5 Ca0.5 Mn0.975 Al0.025 O3, at the transition point between magnetic and non-magnetic states. To do so, they simultaneously varied both the magnetic field and the temperature of the sample. They observed the formation of the kinetic arrest band and showed that it is inversely correlated with states reached at extremes of temperature described at supercooling and superheating bands. They then established that the kinetic arrested state is different from the supercooled state.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kaustav Mukherjee, Kranti Kumar, Alok Banerjee, Praveen Chaddah. On the correlation between supercooling, superheating and kinetic arrest in a magnetic glass Pr0.5Ca0.5Mn0.975Al0.025O3. The European Physical Journal B, 2013; 86 (1) DOI: 10.1140/epjb/e2012-30748-y

Cite This Page:

Springer Science+Business Media. "Novel materials: Smart and magnetic." ScienceDaily. ScienceDaily, 28 January 2013. <www.sciencedaily.com/releases/2013/01/130128081944.htm>.
Springer Science+Business Media. (2013, January 28). Novel materials: Smart and magnetic. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2013/01/130128081944.htm
Springer Science+Business Media. "Novel materials: Smart and magnetic." ScienceDaily. www.sciencedaily.com/releases/2013/01/130128081944.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins