Featured Research

from universities, journals, and other organizations

TW Hydrae: There's more to astronomers' favorite planetary nursery than previously thought

Date:
January 30, 2013
Source:
Max Planck Institute for Astronomy/Max-Planck-Institut für Astronomie
Summary:
Astronomers have used a new method to determine the mass of the planetary nursery around the star TW Hydrae. At a distance of merely 176 light-years from Earth, this is the closest star that is currently forming new planets – hence one of the most important objects for astronomers studying planet formation. The precise new measurement shows a much larger mass for TW Hydrae's disk than in previous studies, indicating that the system could be forming planets similar to those of our own Solar System.

Artist's impression of the gas and dust disk around the young star TW Hydrae. New measurements using the Herschel space telescope have shown that the mass of the disk is greater than previously thought.
Credit: Axel M. Quetz (MPIA)

Using ESA's Herschel Space Telescope, astronomers including Thomas Henning from the Max Planck Institute for Astronomy in Heidelberg have used a new method to determine the mass of the planetary nursery around the star TW Hydrae. At a distance of merely 176 light-years from Earth, this is the closest star that is currently forming new planets -- hence one of the most important objects for astronomers studying planet formation. The precise new measurement shows a much larger mass for TW Hydrae's disk than in previous studies, indicating that the system could be forming planets similar to those of our own Solar System.

The study is published in the January 31 issue of the journal Nature.

Where Egyptologists have their Rosetta Stone and geneticists their Drosophila fruit flies, astronomers studying planet formation have TW Hydrae: A readily accessible sample object with the potential to provide foundations for an entire area of study. TW Hydrae is a young star with about the same mass as the Sun. It is surrounded by a protoplanetary disk: a disk of dense gas and dust in which small grains of ice and dust clump to form larger objects and, eventually, into planets. This is how our Solar System came into being more than 4 billion years ago.

What is special about the TW Hydrae disk is its proximity to Earth: at a distance of 176 light-years from Earth, this disk is two-and-a-half times closer to us than the next nearest specimens, giving astronomers an unparalleled view of this highly interesting specimen -- if only figuratively, because the disk is to small to show up on an image; its presence and properties can only be deduced by comparing light received from the system at different wavelengths (that is, the object's spectrum) with the prediction of models.

In consequence, TW Hydrae has one of the most frequently observed protoplanetary disks of all, and its observations are a key to testing current models of planet formation. That's why it was especially vexing that one of the fundamental parameters of the disk remained fairly uncertain: The total mass of the molecular hydrogen gas contained within the disk. This mass value is crucial in determining how many and what kinds of planets can be expected to form.

Previous mass determinations were heavily dependent on model assumptions; the results had significant error bars, spanning a mass range between 0.5 and 63 Jupiter masses. The new measurements exploit the fact that not all hydrogen molecules are created equal: Some very few of them contain a deuterium atom -- where the atomic nucleus of hydrogen consists of a single proton, deuterium has an additional neutron. This slight change means that these "hydrogen deuteride" molecules consisting of one deuterium and one ordinary hydrogen atom emit significant infrared radiation related to the molecule's rotation.

The Herschel Space Telescope provides the unique combination of sensitivity at the required wavelengths and spectrum-taking ability ("spectral resolution") required for detecting the unusual molecules. The observation sets a lower limit for the disk mass at 52 Jupiter masses, with an uncertainty ten times smaller than previous result. While TW Hydrae is estimated to be relatively old for a stellar system with disk (between 3 and 10 million years), this shows that there is still ample of matter in the disk to form a planetary system larger than our own (which arose from a much lighter disk).

On this basis, additional observations, notably with the millimeter/submillimeter array ALMA in Chile, promise much more detailed future disk models for TW Hydrae -- and, consequently, much more rigorous tests of theories of planet formation.

The observations also throw an interesting light on how science is done -- and how it shouldn't be done. Thomas Henning explains: "This project started in casual conversation between Ted Bergin, Ewine van Dishoek and me. We realized that Herschel was our only chance to observe hydrogen deuteride in this disk -- way too good an opportunity to pass up. But we also realized we would be taking a risk. At least one model predicted that we shouldn't have seen anything! Instead, the results were much better than we had dared to hope."

TW Hydrae holds a clear lesson for the committees that allocate funding for scientific projects or, in the case of astronomy, observing time on major telescopes -- and which sometimes take a rather conservative stance, practically requiring the applicant to guarantee their project will work. In Henning's words: "If there's no chance your project can fail, you're probably not doing very interesting science. TW Hydrae is a good example of how a calculated scientific gamble can pay off."


Story Source:

The above story is based on materials provided by Max Planck Institute for Astronomy/Max-Planck-Institut für Astronomie. Note: Materials may be edited for content and length.


Journal Reference:

  1. Edwin A. Bergin, L. Ilsedore Cleeves, Uma Gorti, Ke Zhang, Geoffrey A. Blake, Joel D. Green, Sean M. Andrews, Neal J. Evans II, Thomas Henning, Karin Öberg, Klaus Pontoppidan, Chunhua Qi, Colette Salyk, Ewine F. van Dishoeck. An old disk still capable of forming a planetary system. Nature, 2013; 493 (7434): 644 DOI: 10.1038/nature11805

Cite This Page:

Max Planck Institute for Astronomy/Max-Planck-Institut für Astronomie. "TW Hydrae: There's more to astronomers' favorite planetary nursery than previously thought." ScienceDaily. ScienceDaily, 30 January 2013. <www.sciencedaily.com/releases/2013/01/130130132322.htm>.
Max Planck Institute for Astronomy/Max-Planck-Institut für Astronomie. (2013, January 30). TW Hydrae: There's more to astronomers' favorite planetary nursery than previously thought. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2013/01/130130132322.htm
Max Planck Institute for Astronomy/Max-Planck-Institut für Astronomie. "TW Hydrae: There's more to astronomers' favorite planetary nursery than previously thought." ScienceDaily. www.sciencedaily.com/releases/2013/01/130130132322.htm (accessed July 28, 2014).

Share This




More Space & Time News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) — The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com
NASA EDGE: OCO-2 Launch

NASA EDGE: OCO-2 Launch

NASA (July 25, 2014) — NASA EDGE webcasts live from Vandenberg AFB for the launch of the Oribiting Carbon Observatory-2 (OCO) launch. Video provided by NASA
Powered by NewsLook.com
This Week @ NASA, July 25, 2014

This Week @ NASA, July 25, 2014

NASA (July 25, 2014) — Apollo 11 celebration, Next Giant Leap anticipation, ISS astronauts appear in the House and more... Video provided by NASA
Powered by NewsLook.com
Space to Ground: Coming and Going

Space to Ground: Coming and Going

NASA (July 25, 2014) — One station cargo ship leaves, another arrives, aquatic research and commercial spinoffs. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

More Coverage


Herschel Finds Past-Prime Star May Be Making Planets

Jan. 30, 2013 — A star thought to have passed the age at which it can form planets may, in fact, be creating new worlds. The disk of material surrounding the surprising star called TW Hydrae may be massive enough to ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins