Featured Research

from universities, journals, and other organizations

New genes for short-sightedness: 24 new genes that cause refractive errors and myopia identified

Date:
February 10, 2013
Source:
King's College London
Summary:
Myopia is a major cause of blindness and visual impairment worldwide, and currently there is no cure. New findings reveal genetic causes of the trait, which could lead to finding better treatments or ways of preventing the condition in the future.

An international team of scientists led by King's College London has discovered 24 new genes that cause refractive errors and myopia (short-sightedness).

Related Articles


Myopia is a major cause of blindness and visual impairment worldwide, and currently there is no cure. These findings, published February 10 in the journal Nature Genetics, reveal genetic causes of the trait, which could lead to finding better treatments or ways of preventing the condition in the future.

Thirty per cent of Western populations and up to 80 per cent of Asian people suffer from myopia. During visual development in childhood and adolescence the eye grows in length, but in myopes it grows too long, and light entering the eye is then focused in front of the retina rather than on it. This results in a blurred image. This refractive error can be corrected with glasses, contact lenses or surgery. However, the eye remains longer, the retina is thinner, and this may lead to retinal detachment, glaucoma or macular degeneration, especially with higher degrees of myopia. Myopia is highly heritable, although up to now, little was known about the genetic background.

To find the genes responsible, researchers from Europe, Asia, Australia and the United States collaborated as the Consortium for Refraction and Myopia (CREAM). They analysed genetic and refractive error data of over 45,000 people from 32 different studies, and found 24 new genes for this trait, and confirmed two previously reported genes. Interestingly, the genes did not show significant differences between the European and Asian groups, despite the higher prevelance among Asian people. The new genes include those which function in brain and eye tissue signalling, the structure of the eye, and eye development. The genes lead to a high risk of myopia and carriers of the high-risk genes had a tenfold increased risk.

It was already known that environmental factors, such as reading, lack of outdoor exposure, and a higher level of education can increase the risk of myopia. The condition is more common in people living in urban areas. An unfavourable combination of genetic predisposition and environmental factors appears to be particularly risky for development of myopia. How these environmental factors affect the newly identified genes and cause myopia remains intriguing, and will be further investigated by the consortium.

Professor Chris Hammond from the Department of Twin Research and Genetic Epidemiology at King's College London, and lead author of the paper, said: 'We already knew that myopia -- or short-sightedness -- tends to run in families, but until now we knew little about the genetic causes. This study reveals for the first time a group of new genes that are associated with myopia and that carriers of some of these genes have a 10-fold increased risk of developing the condition.

'Currently myopia is corrected with glasses or contact lenses, but now we understand more about the genetic triggers for the condition we can begin to explore other ways to correct it or prevent progression. It is an extremely exciting step forward which could potentially lead to better treatments or prevention in the future for millions around the world.'

Currently, possibilities to reduce progression of myopia are very limited. While one drug, called atropine, may reduce progression, it dilates the pupil and causes problems with light sensitivity and difficulty with reading. New options are necessary. Chances are good that the insights gained from this study will provide openings for development of new strategies.


Story Source:

The above story is based on materials provided by King's College London. Note: Materials may be edited for content and length.


Journal Reference:

  1. Virginie J M Verhoeven, Pirro G Hysi, Robert Wojciechowski, Qiao Fan, Jeremy A Guggenheim, René Höhn, Stuart MacGregor, Alex W Hewitt, Abhishek Nag, Ching-Yu Cheng, Ekaterina Yonova-Doing, Xin Zhou, M Kamran Ikram, Gabriëlle H S Buitendijk, George McMahon, John P Kemp, Beate St Pourcain, Claire L Simpson, Kari-Matti Mäkelä, Terho Lehtimäki, Mika Kähönen, Andrew D Paterson, S Mohsen Hosseini, Hoi Suen Wong, Liang Xu, Jost B Jonas, Olavi Pärssinen, Juho Wedenoja, Shea Ping Yip, Daniel W H Ho, Chi Pui Pang, Li Jia Chen, Kathryn P Burdon, Jamie E Craig, Barbara E K Klein, Ronald Klein, Toomas Haller, Andres Metspalu, Chiea-Chuen Khor, E-Shyong Tai, Tin Aung, Eranga Vithana, Wan-Ting Tay, Veluchamy A Barathi, Peng Chen, Ruoying Li, Jiemin Liao, Yingfeng Zheng, Rick T Ong, Angela Döring, David M Evans, Nicholas J Timpson, Annemieke J M H Verkerk, Thomas Meitinger, Olli Raitakari, Felicia Hawthorne, Tim D Spector, Lennart C Karssen, Mario Pirastu, Federico Murgia, Wei Ang, Aniket Mishra, Grant W Montgomery, Craig E Pennell, Phillippa M Cumberland, Ioana Cotlarciuc, Paul Mitchell, Jie Jin Wang, Maria Schache, Sarayut Janmahasathian, Robert P Igo Jr, Jonathan H Lass, Emily Chew, Sudha K Iyengar, Theo G M F Gorgels, Igor Rudan, Caroline Hayward, Alan F Wright, Ozren Polasek, Zoran Vatavuk, James F Wilson, Brian Fleck, Tanja Zeller, Alireza Mirshahi, Christian Müller, André G Uitterlinden, Fernando Rivadeneira, Johannes R Vingerling, Albert Hofman, Ben A Oostra, Najaf Amin, Arthur A B Bergen, Yik-Ying Teo, Jugnoo S Rahi, Veronique Vitart, Cathy Williams, Paul N Baird, Tien-Yin Wong, Konrad Oexle, Norbert Pfeiffer, David A Mackey, Terri L Young, Cornelia M van Duijn, Seang-Mei Saw, Joan E Bailey-Wilson, Dwight Stambolian, Caroline C Klaver, Christopher J Hammond. Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. Nature Genetics, 2013; 45 (3): 314 DOI: 10.1038/ng.2554

Cite This Page:

King's College London. "New genes for short-sightedness: 24 new genes that cause refractive errors and myopia identified." ScienceDaily. ScienceDaily, 10 February 2013. <www.sciencedaily.com/releases/2013/02/130210143252.htm>.
King's College London. (2013, February 10). New genes for short-sightedness: 24 new genes that cause refractive errors and myopia identified. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2013/02/130210143252.htm
King's College London. "New genes for short-sightedness: 24 new genes that cause refractive errors and myopia identified." ScienceDaily. www.sciencedaily.com/releases/2013/02/130210143252.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) — The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) — The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) — New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) — Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins