Featured Research

from universities, journals, and other organizations

Semiconductor interfaces: Big opportunities for tiny insulators

Date:
February 13, 2013
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
A model that predicts real-world behaviors of insulator interfaces makes designing ‘nano-electronic’ materials significantly simpler.

A new theoretical model enables accurate predictions of dipoles at oxide interfaces (left, electron microscopy image) using the classical property of electronegativity (right). The scale shows how two elements with different relative electronegativities align at an interface.
Credit: 2013 A*STAR Institute of Materials Research and Engineering

A model that predicts real-world behaviors of insulator interfaces makes designing 'nano-electronic' materials significantly simpler.

Advances in miniaturization have made electronic devices cheaper and more powerful, but these procedures also create new challenges for materials scientists. For example, traditional silicon dioxide insulators used in field-effect transistors begin to leak small amounts of current at nanoscale dimensions. To combat this problem, researchers have developed insulators called 'high-k dielectrics' that link heavier elements, such as hafnium or zirconium, into insulating oxide films with exceptional charge-isolating capabilities.

Integrating high-k dielectrics into circuits, however, creates a different manufacturing problem. Localized electric fields known as charged dipoles can form at insulator-semiconductor interfaces and generate unwanted voltages that impact device performance. Sing Yang Chiam from the A*STAR Institute of Materials Research and Engineering in Singapore and co-workers have now developed a model that can identify interface dipole problems before they appear1 -- a finding that promises to help end the 'trial-and-error' design issues typical of high-k dielectrics.

Currently, materials scientists employ extensive quantum mechanical calculations to determine whether or not new high-k dielectrics will have interface dipoles. Chiam and co-workers investigated a more intuitive approach: they linked the appearance of interface dipoles to the classical property of electronegativity, a number that relates an element's electron-attracting power to its position in the periodic table.

Scientists have previously avoided estimating dipoles with electronegativity values because, in many cases, they predict incorrect electric field polarities. To resolve this discrepancy, Chiam and co-workers correlated theoretical electronegativity with experimental 'charge neutrality levels' -- electronic energies required to counterbalance dipoles on insulator interfaces. After measuring the charge neutrality on several different high-k dielectrics with X-ray and ultraviolet radiation (see image), the team plotted this data against electronegativity. They discovered that a simple linear equation connected the two parameters.

Further manipulation of this equation revealed it could also predict a so-called 'dipole neutrality point' (DNP) where interfacial dipoles flip polarity. Armed with this new theoretical tool, the researchers investigated both well-known and novel high-k dielectric/semiconductor interfaces. They found that the DNP concept provided accurate predictions of dipole polarity and strength: the offset voltages needed to turn on a high-k dielectric field-effect transistor closely matched values generated from the electronegativity values.

Chiam notes that the straightforwardness of this model should make it exceptionally practical for scientific discovery. "This is the simplest method to find dipoles at material interfaces before starting experiments," he says. "Our model can predict what kinds of bulk or interface modifications are needed to offset dipole values -- a significant time saving over traditional approaches."

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. Z. Q. Liu, W. K. Chim, S. Y. Chiam, J. S. Pan, C. M. Ng. An interface dipole predictive model for high-k dielectric/semiconductor heterostructures using the concept of the dipole neutrality point. Journal of Materials Chemistry, 2012; 22 (34): 17887 DOI: 10.1039/C2JM32589F

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Semiconductor interfaces: Big opportunities for tiny insulators." ScienceDaily. ScienceDaily, 13 February 2013. <www.sciencedaily.com/releases/2013/02/130213173039.htm>.
The Agency for Science, Technology and Research (A*STAR). (2013, February 13). Semiconductor interfaces: Big opportunities for tiny insulators. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2013/02/130213173039.htm
The Agency for Science, Technology and Research (A*STAR). "Semiconductor interfaces: Big opportunities for tiny insulators." ScienceDaily. www.sciencedaily.com/releases/2013/02/130213173039.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins