Featured Research

from universities, journals, and other organizations

Manufacturing: Chip-free ceramics

Date:
February 13, 2013
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
Rethinking the process used to machine industrially important ceramics could reduce damaging cracks and chips.

Rethinking the process used to machine industrially important ceramics could reduce damaging cracks and chip.

Ceramics are hard, chemically inert and can withstand high temperatures. These attributes make them ideal structural components in engines, high-performance disk brakes and medical implants. However, as ceramics are also brittle, using conventional tools -- such as drills -- to machine them is difficult. Instead, manufacturers rely on ultrasonic machining, in which a 'hammer' rapidly vibrates up and down. This process pushes slurry, which contains fine and abrasive grit, into the material and causes chipping.

Research by G.C. Lim and co-workers at the A*STAR Institute of Manufacturing Technology, Singapore, has now improved understanding of how this abrading process creates cracks in a ceramic, making it less durable for applications1. The team's findings could inspire new approaches to machining ceramics, a key element in Singapore's rapidly growing manufacturing sector.

Ultrasonic machining is known to leave cracks at the entrance and exit of a drilled hole, and a rough surface within the hole (see image). Often, these defects are visible only under a microscope; nonetheless, they make the hole and surrounding material more susceptible to wear and tear. "Imperfections act as initiating locations, where cracks and fractures occur and propagate more easily than other places, resulting in early failure of the component," says Lim.

The researchers studied crack formation by drilling holes of between 0.7 and 3.0 millimeters in diameter into plates made of 3 industrially important ceramics: silicon carbide, zirconia and alumina. They recorded images of the cracks and chips along the inner sides of the holes with a microscope and then used diagrams to model the way force is transferred from the hammering tool to the grit, and from the grit into the ceramic.

Lim and his colleagues found that as the grit removes material -- by making tiny pits or rubbing against the walls -- it creates cracks, which can be up to four times longer than the grit particles and extend out radially from the hole. The team concluded that these cracks are inherent to the way ultrasonic machining works, which means the number of cracks can be reduced by using smaller grit particles but never entirely eliminated.

Lim says they are now in a better position to optimize the drilling process. Since the smallest grit particles yield the smoothest holes but make drilling take longer, Lim recommends a two-step process: quickly drill a slightly smaller hole than needed with a large grit size, and then use a smaller grit size to make the final hole with a smooth finish.

The A*STAR affiliated researchers contributing to this research are from the Singapore Institute of Manufacturing Technology


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. Chandra Nath, G.C. Lim, H.Y. Zheng. Influence of the material removal mechanisms on hole integrity in ultrasonic machining of structural ceramics. Ultrasonics, 2012; 52 (5): 605 DOI: 10.1016/j.ultras.2011.12.007

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Manufacturing: Chip-free ceramics." ScienceDaily. ScienceDaily, 13 February 2013. <www.sciencedaily.com/releases/2013/02/130213173041.htm>.
The Agency for Science, Technology and Research (A*STAR). (2013, February 13). Manufacturing: Chip-free ceramics. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2013/02/130213173041.htm
The Agency for Science, Technology and Research (A*STAR). "Manufacturing: Chip-free ceramics." ScienceDaily. www.sciencedaily.com/releases/2013/02/130213173041.htm (accessed September 16, 2014).

Share This



More Matter & Energy News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) — Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) — New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com
Frustration As Drone Industry Outpaces Regulation In U.S.

Frustration As Drone Industry Outpaces Regulation In U.S.

Newsy (Sep. 14, 2014) — U.S. firms worry they’re falling behind in the marketplace as the FAA considers how to regulate commercial drones. Video provided by Newsy
Powered by NewsLook.com
Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Newsy (Sep. 14, 2014) — Winners of a contest for smart gun design are asking not to be named after others in the industry received threats for marketing similar products. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins