Featured Research

from universities, journals, and other organizations

Researchers 'nanoweld' by applying light to aligned nanorods in solid materials

Date:
February 21, 2013
Source:
North Carolina State University
Summary:
Researchers have developed a way to melt or "weld" specific portions of polymers by embedding aligned nanoparticles within the materials. Their technique, which melts fibers along a chosen direction within a material, may lead to stronger, more resilient nanofibers and materials.

Polarized light selectively heats and melts nanofibers containing aligned gold nanorods within a cross-hatched mat when the polarization direction is parallel to the nanofiber direction.
Credit: Image courtesy of North Carolina State University

Researchers from North Carolina State University have developed a way to melt or "weld" specific portions of polymers by embedding aligned nanoparticles within the materials. Their technique, which melts fibers along a chosen direction within a material, may lead to stronger, more resilient nanofibers and materials.

Physicists Jason Bochinski and Laura Clarke, with materials scientist Joe Tracy, placed specifically aligned gold nanorods within a solid material. Gold nanorods absorb light at different wavelengths, depending upon the size and orientation of the nanorod, and then they convert that absorbed light directly into heat. In this case, the nanorods were designed to respond to light wavelengths of 520 nanometers (nm) in a horizontal alignment and 800 nm when vertically aligned. Human beings can see light at 520 nm (it looks green), while 808 nm is in the near infrared spectrum, invisible to our eyes.

When the different wavelengths of light were applied to the material, they melted the fibers along the chosen directions, while leaving surrounding fibers largely intact.

"Being able to heat materials spatially in this way gives us the ability to manipulate very specific portions of these materials, because nanorods localize heat -- that is, the heat they produce only affects the nanorod and its immediate surroundings," Tracy says.

According to Bochinski, the work also has implications for optimizing materials that have already been manufactured: "We can use heat at the nanoscale to change mechanical characteristics of objects postproduction without affecting their physical properties, which means more efficiency and less waste."

The researchers' findings appear in Particle & Particle Systems Characterization. The work was funded by grants from the National Science Foundation and Sigma Xi. Graduate students Wei-Chen Wu and Somsubhra Maity and former undergraduate student Krystian Kozek contributed to the work.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Somsubhra Maity, Krystian A. Kozek, Wei-Chen Wu, Joseph B. Tracy, Jason R. Bochinski, Laura I. Clarke. Anisotropic Thermal Processing of Polymer Nanocomposites via the Photothermal Effect of Gold Nanorods. Particle & Particle Systems Characterization, 2013; DOI: 10.1002/ppsc.201200084

Cite This Page:

North Carolina State University. "Researchers 'nanoweld' by applying light to aligned nanorods in solid materials." ScienceDaily. ScienceDaily, 21 February 2013. <www.sciencedaily.com/releases/2013/02/130221143944.htm>.
North Carolina State University. (2013, February 21). Researchers 'nanoweld' by applying light to aligned nanorods in solid materials. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2013/02/130221143944.htm
North Carolina State University. "Researchers 'nanoweld' by applying light to aligned nanorods in solid materials." ScienceDaily. www.sciencedaily.com/releases/2013/02/130221143944.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins