Featured Research

from universities, journals, and other organizations

Computed tomography provides real-time 3D pictures showing how oil and water flow in porous rock

Date:
February 27, 2013
Source:
Paul Scherrer Institut (PSI)
Summary:
For the first time, experiments using computed tomography have allowed scientists to observe in 3-D the flow of oil and water in real rock on an unprecedented scale. The new approach trailed and the information gathered by the experiments contribute to an improved understanding of multiphase flow and transport in porous media.

Large volume, single pore gets filled via only a single pore throat. Sequence after 16.8 seconds.
Credit: PSI

For the first time, experiments using computed tomography have allowed scientists to observe in 3D the flow of oil and water in real rock on an unprecedented scale. The new approach trailed and the information gathered by the experiments contribute to an improved understanding of multiphase flow and transport in porous media.

The research was performed by a joint team of scientists from Shell, the Paul Scherrer Institute in Switzerland and the Johannes Gutenberg University in Germany. The results have been published in the Proceedings of the National Academy of Sciences.

On a global scale conventional oil production leaves approximately 50-70% of the oil behind. With this new insight into the fundamental processes the industry can develop new and safe methods to produce more oil from existing reservoirs. Oil and gas are typically trapped inside small pores in sedimentary rocks. Standard approaches for describing macroscopic behaviour of simultaneous flow of several immiscible fluids, such as oil and water have many shortcomings and do not contribute to our understanding of the processes on the level of single pores. The new experimental data provide a ground-breaking reference to validate pore-scale numerical models with individual pores at a spatial resolution of a few thousandths of millimetres.

The experiments have been performed at the Swiss Light Source at the Paul Scherrer Institute and are based on a new fast computed tomography (CT) technique for 3D visualisation of the processes as they happen. In these experiments small samples of the rock are illuminated from different directions with high intensity X-rays, and the images produced are combined to provide high resolution 3D images that can be put together to create a movie showing the processes.

Dr Sarah Irvine, the supporting scientist at the Paul Scherrer Institute, who helped develop the fast tomography technique and execute the experiment, said: "In the past, full CT scans at this spatial resolution would have taken 20 minutes or longer. Using X-rays from the SLS with our fast tomography setup, we can acquire individual projection images in a few milliseconds or less. Typically over a thousand of these acquired over 180 of rotation are combined to reconstruct a full 3D data set with a total scan time of just a few seconds, or even faster."

Professor Dr. Michael Kersten of the Institute of Geosciences at Johannes Gutenberg University in Mainz, Germany, explains: "This achievement is important to understand how a mixture of several fluids flows through pores of different sizes." The Mainz researchers contributed primarily to the data analysis and visualisation. Thanks to their software skills and experience gained over a decade of CT work, Kersten's group was able to reduce over 10 TB of high-resolution data down to minute-lasting movies of the key events. The results shed light onto characteristics of fluid-behaviour that up till now were only poorly understood. For the first time ever, the researchers were able to directly observe so-called Haines jumps, sudden changes in the way a fluid moves through porous media, in actual rock. The findings oppose the common paradigm that such changes are locally restricted to single pores. Instead, they cascade through dozens of pores simultaneously.

Dr. Steffen Berg, research institute member of Shell Global Solutions International B.V. at Rijswijk, The Netherlands, said: "This work has the potential to change how we look at the mechanisms in porous media and apply this improved understanding to solve some of the energy industry's greatest challenges. The new quantitative data helps to build and validate computer models used to describe the flow of fluids in porous rock. It enables us to ultimately predict macroscopic behaviour and to optimise enhanced oil recovery techniques accordingly."


Story Source:

The above story is based on materials provided by Paul Scherrer Institut (PSI). Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Berg, H. Ott, S. A. Klapp, A. Schwing, R. Neiteler, N. Brussee, A. Makurat, L. Leu, F. Enzmann, J.-O. Schwarz, M. Kersten, S. Irvine, M. Stampanoni. Real-time 3D imaging of Haines jumps in porous media flow. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1221373110

Cite This Page:

Paul Scherrer Institut (PSI). "Computed tomography provides real-time 3D pictures showing how oil and water flow in porous rock." ScienceDaily. ScienceDaily, 27 February 2013. <www.sciencedaily.com/releases/2013/02/130227085836.htm>.
Paul Scherrer Institut (PSI). (2013, February 27). Computed tomography provides real-time 3D pictures showing how oil and water flow in porous rock. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2013/02/130227085836.htm
Paul Scherrer Institut (PSI). "Computed tomography provides real-time 3D pictures showing how oil and water flow in porous rock." ScienceDaily. www.sciencedaily.com/releases/2013/02/130227085836.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Portable Breathalyzer Gets You Home Safely

Portable Breathalyzer Gets You Home Safely

Buzz60 (Oct. 21, 2014) Breeze, a portable breathalyzer, gets you home safely by instantly showing your blood alcohol content, and with one tap, lets you call an Uber, a cab or a friend from your contact list to pick you up. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins