Featured Research

from universities, journals, and other organizations

Mom's placenta reflects her exposure to stress and impacts offsprings' brains

Date:
March 4, 2013
Source:
University of Pennsylvania
Summary:
The mammalian placenta is more than just a filter through which nutrition and oxygen are passed from a mother to her unborn child. According to a new study, if a mother is exposed to stress during pregnancy, her placenta translates that experience to her fetus by altering levels of a protein that affects the developing brains of male and female offspring differently.

Female mice with normal OGT levels (left) had dramatically different gene expression patterns than females with reduced OGT.
Credit: Image courtesy of University of Pennsylvania

The mammalian placenta is more than just a filter through which nutrition and oxygen are passed from a mother to her unborn child. According to a new study by a research group from the University of Pennsylvania School of Veterinary Medicine, if a mother is exposed to stress during pregnancy, her placenta translates that experience to her fetus by altering levels of a protein that affects the developing brains of male and female offspring differently.

Related Articles


These findings suggest one way in which maternal-stress exposure may be linked to neurodevelopmental diseases such as autism and schizophrenia, which affect males more frequently or more severely than females.

"Most everything experienced by a woman during a pregnancy has to interact with the placenta in order to transmit to the fetus," said Tracy L. Bale, senior author on the paper and an associate professor in the Department of Animal Biology at Penn Vet. "Now we have a marker that appears to signal to the fetus that its mother has experienced stress."

Bale also holds an appointment in the Department of Psychiatry in Penn's Perelman School of Medicine. Her coauthors include lead author and postdoctoral researcher Christopher L. Howerton, graduate student Christopher Morgan and former technician David B. Fischer, all of Penn Vet.

Published in the Proceedings of the National Academy of Sciences, the study builds on previous work by Bale and her colleagues which found that female mice exposed to stress during pregnancy gave birth to males who had heightened reactions to stress. Further research showed that the effect extended to the second generation: The sons of those male mice also had abnormal stress reactions.

Meanwhile, human studies conducted by other researchers have shown that males born to women who experience stress in the first trimester of pregnancy are at an increased risk of developing schizophrenia.

The Penn team hoped to find a biomarker that could account for these changes and risk factors. To be an effective signal of maternal stress, the researchers reasoned, a biomarker would need to show differences in expression between male and female offspring and would need to be different between stressed and unstressed mothers. They also wanted to find a marker that behaved similarly in humans.

They went about their search by first exposing a group of female mice to mild stresses, such as fox odor or unfamiliar noises, during the first week of their pregnancies, a time period equivalent to the first trimester of a human pregnancy. Another group of pregnant mice was unexposed.

In a genome-wide screen of the female's placentas, one gene stood out as meeting the researchers' criteria: Ogt, an X-linked gene that codes for the enzyme O-linked-N-acetylglucosamine transferase (OGT). Placentas from male offspring had lower levels of OGT than those from female offspring, and all placentas from stressed mothers had lower levels than placentas from their unstressed counterparts.

To determine how placental exposure to reduced levels of OGT might differentially affect the brains of male and female offspring, Bale's team developed a mouse in which they could genetically control OGT's expression. Comparing females with normal levels of placental OGT to females that had been manipulated to have half as much, the researchers observed changes in more than 370 genes in the offspring's developing hypothalamus. Many of these genes are known to be involved in energy use, protein regulation and synapse formation, functions that are critical to neurological development.

In addition, Bale and colleagues found promising signs that these results translate to humans. They analyzed human placentas that had been discarded after the birth of male babies. No identifying information was associated with the tissue, but the researchers discovered that the male (XY) side of the placenta had reduced OGT expression compared to the maternal (XX) side, similar to this genes regulation in mouse placenta.

Together, the results suggest that the OGT enzyme may be acting to protect the brain during gestation but that males have less of this protective enzyme to begin with, placing them at an increased risk of abnormal neurodevelopment if their mother is stressed during pregnancy.

If OGT's status as a biomarker for exposure to prenatal stress and heightened risk for neurodevelopmental problems is confirmed in humans, Bale said it could help detect vulnerable individuals earlier in life than is currently possible.

"We want to get to the point where we can predict the occurrence of neurodevelopmental disease," Bale said. "If we have a marker for exposure, we can meld that with what we know about the genetic profiles that predispose individuals to these conditions and keep a close eye on children who have increased risks."


Story Source:

The above story is based on materials provided by University of Pennsylvania. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania. "Mom's placenta reflects her exposure to stress and impacts offsprings' brains." ScienceDaily. ScienceDaily, 4 March 2013. <www.sciencedaily.com/releases/2013/03/130304151811.htm>.
University of Pennsylvania. (2013, March 4). Mom's placenta reflects her exposure to stress and impacts offsprings' brains. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2013/03/130304151811.htm
University of Pennsylvania. "Mom's placenta reflects her exposure to stress and impacts offsprings' brains." ScienceDaily. www.sciencedaily.com/releases/2013/03/130304151811.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins