Featured Research

from universities, journals, and other organizations

First single gene mutation shown to result in type 1 diabetes

Date:
March 5, 2013
Source:
JDRF
Summary:
A new study has shown that a single gene called SIRT1 may be involved in the development of type 1 diabetes (T1D) and other autoimmune diseases. The study represents the first demonstration of a monogenetic defect leading to the onset of T1D.

A JDRF-funded study out of Switzerland has shown that a single gene called SIRT1 may be involved in the development of type 1 diabetes (T1D) and other autoimmune diseases. The study, "Identification of a SIRT1 Mutation in a Family with Type 1 Diabetes," was published March 5 in Cell Metabolism and represents the first demonstration of a monogenetic defect leading to the onset of T1D.

The research began when Marc Donath, M.D., endocrinologist and researcher at the University Hospital Basel in Switzerland, discovered an interesting pattern of autoimmune disease within the family of one of his patients, a 26-year-old male who had recently been diagnosed with T1D. The patient showed an uncommonly strong family history of T1D; his sister, father, and paternal cousin had also been diagnosed earlier in their lives. Additionally, another family member had developed ulcerative colitis, also an autoimmune disease.

"This pattern of inheritance was indicative of dominant genetic mutation, and we therefore decided to attempt to identify it," Dr. Donath said.

Four years of analysis using three different genotyping and sequencing techniques pointed to a mutation on the SIRT1 gene as the common indicator of autoimmune disease within the family. The SIRT1 gene plays a role in regulating metabolism and protecting against age-related disease. To gain more understanding of how this genetic change in SIRT1 leads to T1D, Dr. Donath and his team performed additional studies with animal models of T1D. When the mutant SIRT1 gene found in the families was expressed in beta cells, those beta cells generated more mediators that were destructive to them. Furthermore, knocking out the normal SIRT1 gene in mice resulted in their becoming more susceptible to diabetes with greatly increased islet destruction. Dr. Donath speculates that the beta cell impairment and death due to the SIRT1 mutation subsequently activates the immune system toward T1D.

"The identification of a gene leading to type 1 diabetes could allow us to understand the mechanism responsible for the disease and may open up new treatment options," Dr. Donath explained.

Patricia Kilian, Ph.D., director of the Beta Cell Regeneration Program at JDRF, concurred, and said that the development is exciting for many reasons: "While the change in the genetic makeup within this family with type 1 diabetes is rare, the discovery of the role of the SIRT1 pathway in affecting beta cells could help scientists find ways to enhance beta cell survival and function in more common forms of the disease. This study also reinforces increasing evidence that abnormal beta cell function has a role in the development of type 1 diabetes, and that blocking or reversing early stages of beta cell dysfunction may help prevent or significantly delay the disease's onset. Drug companies are already in the process of developing SIRT1 activators, which could eventually speed our ability to translate these new research findings into meaningful therapies for patients."

JDRF is continuing to fund research by Dr. Donath that builds off of these latest findings.


Story Source:

The above story is based on materials provided by JDRF. Note: Materials may be edited for content and length.


Journal Reference:

  1. Anna Biason-Lauber, Marianne Böni-Schnetzler, Basil P. Hubbard, Karim Bouzakri, Andrea Brunner, Claudia Cavelti-Weder, Cornelia Keller, Monika Meyer-Böni, Daniel T. Meier, Caroline Brorsson, Katharina Timper, Gil Leibowitz, Andrea Patrignani, Remy Bruggmann, Gino Boily, Henryk Zulewski, Andreas Geier, Jennifer M. Cermak, Peter Elliott, James L. Ellis, Christoph Westphal, Urs Knobel, Jyrki J. Eloranta, Julie Kerr-Conte, François Pattou, Daniel Konrad, Christian M. Matter, Adriano Fontana, Gerhard Rogler, Ralph Schlapbach, Camille Regairaz, José M. Carballido, Benjamin Glaser, Michael W. McBurney, Flemming Pociot, David A. Sinclair, Marc Y. Donath. Identification of a SIRT1 Mutation in a Family with Type 1 Diabetes. Cell Metabolism, 2013; 17 (3): 448 DOI: 10.1016/j.cmet.2013.02.001

Cite This Page:

JDRF. "First single gene mutation shown to result in type 1 diabetes." ScienceDaily. ScienceDaily, 5 March 2013. <www.sciencedaily.com/releases/2013/03/130305131408.htm>.
JDRF. (2013, March 5). First single gene mutation shown to result in type 1 diabetes. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2013/03/130305131408.htm
JDRF. "First single gene mutation shown to result in type 1 diabetes." ScienceDaily. www.sciencedaily.com/releases/2013/03/130305131408.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Snack Attack: Study Says Action Movies Make You Snack More

Snack Attack: Study Says Action Movies Make You Snack More

Newsy (Sep. 2, 2014) — You're more likely to gain weight while watching action flicks than you are watching other types of programming, says a new study published in JAMA. Video provided by Newsy
Powered by NewsLook.com
U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) — The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) — Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) — New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins